102 research outputs found

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation

    Get PDF
    Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and 15N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40-57 Ω-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis

    Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mild hypophosphatasia (HPP) phenotype may result from <it>ALPL </it>gene mutations exhibiting residual alkaline phosphatase activity or from severe heterozygous mutations exhibiting a dominant negative effect. In order to determine the cause of our failure to detect a second mutation by sequencing in patients with mild HPP and carrying on a single heterozygous mutation, we tested the possible dominant effect of 35 mutations carried by these patients.</p> <p>Methods</p> <p>We tested the mutations by site-directed mutagenesis. We also genotyped 8 exonic and intronic <it>ALPL </it>gene polymorphisms in the patients and in a control group in order to detect the possible existence of a recurrent intronic mild mutation.</p> <p>Results</p> <p>We found that most of the tested mutations exhibit a dominant negative effect that may account for the mild HPP phenotype, and that for at least some of the patients, a second mutation in linkage disequilibrium with a particular haplotype could not be ruled out.</p> <p>Conclusion</p> <p>Mild HPP results in part from compound heterozygosity for severe and moderate mutations, but also in a large part from heterozygous mutations with a dominant negative effect.</p

    Antigenicity and native structure of globular proteins: low frequency of peptide reactive antibodies.

    No full text

    Different functional boundaries for the major antigenic region of two cytochromes c.

    No full text
    • …
    corecore