23 research outputs found

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function

    CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology

    Get PDF
    Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/− mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/− mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/− mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/− brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.CAG was supported by the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number P50 HD103525. This work was funded by PID2020-112831GB-I00 AEI /10.13039/501100011033 (MN). SS was supported by a grant from the NIH/NINDS (K23NS119666). SWS is supported by the Hospital for Sick Children Foundation, Autism Speaks, and the University of Toronto McLaughlin Center. EM-G was supported by a grant from MICIU FPU18/06240. EVS. was supported by a grant from the NIH (EY025718). CRF was supported by the fund to support clinical research careers in the Region of Southern Denmark (Region Syddanmarks pulje for kliniske forskerkarriereforløb).Peer reviewe

    Stakeholder views on secondary findings in whole-genome and whole-exome sequencing:a systematic review of quantitative and qualitative studies

    Get PDF
    Purpose: As whole-exome and whole-genome sequencing (WES/WGS) move into routine clinical practice, it is timely to review data that might inform the debate around secondary findings (SF) and the development of policies that maximize participant benefit. Methods: We systematically searched for qualitative and quantitative studies that explored stakeholder views on SF in WES/WGS. Framework analysis was undertaken to identify major themes. Results: 44 articles reporting the views of 11,566 stakeholders were included. Stakeholders were broadly supportive of returning ‘actionable’ findings, but definitions of actionability varied. Stakeholder views on SF disclosure exist along a spectrum: potential WES/WGS recipients’ views were largely influenced by a sense of rights, while views of genomics professionals were informed by a sense of professional responsibility. Experience of genetic illness and testing resulted in greater caution about SF, suggesting that truly informed decisions require an understanding of the implications and limitations of WES/WGS and possible findings. Conclusion: This review suggests that bidirectional interaction during consent might best facilitate informed decision-making about SF, and that dynamic forms of consent, allowing for changing preferences, should be considered. Research exploring views from wider perspectives and from recipients who have received SF is critical if evidence-based policies are to be achieved.</p

    Is punctate palmoplantar keratoderma type 1 associated with malignancy? A systematic review of the literature

    No full text
    Abstract Background An association between punctate palmoplantar keratoderma type 1 (PPPK1) and malignancy has been proposed for decades. Some authors suggest that individuals with PPPK1 should undergo screening for various types of malignancies while others caution that an association is not well-established. In this systematic review, we summarized and evaluated the current evidence for a possible association between PPPK1 and malignancy. Methods The review was conducted along PRISMA guidelines. The search used Embase, MEDLINE, Scopus, and the Human Gene Mutation Database up to March 2022. All studies reporting on individuals with the diagnosis of PPPK1 with or without history of malignancy were included. Two authors screened for eligible studies, extracted predefined data, and performed a quality assessment. Results Of 773 studies identified, 45 were included. Most studies were reports on single families (24 of 45 studies) or multiple families (10 of 45 studies). The number of index cases with PPPK1 across all included studies was 280, and when family members reported with PPPK1 were added, a total of 817 individuals were identified. Overall, 23 studies reported on individuals with PPPK1 with a history of malignancy, whereas 22 studies reported on individuals with PPPK1 without a history of malignancy. Although the extracted data were not considered to be of sufficient quality to synthesize and answer our research question, the review did not confirm an association between PPPK1 and malignancy. Conclusion This review shows that there is a lack of well-designed studies on this topic to conclude whether individuals with PPPK1 have an increased risk of malignancy. Based on the present literature, however, we could not confirm an association between PPPK1 and malignancy and find it highly questionable if patients with PPPK1 should be offered surveillance for malignancies

    The Management of Peutz-Jeghers Syndrome: European Hereditary Tumour Group (EHTG) Guideline

    Get PDF
    The scientific data to guide the management of Peutz-Jeghers syndrome (PJS) are sparse. The available evidence has been reviewed and discussed by diverse medical specialists in the field of PJS to update the previous guideline from 2010 and formulate a revised practical guideline for colleagues managing PJS patients. Methods: Literature searches were performed using MEDLINE, Embase, and Cochrane. Evidence levels and recommendation strengths were assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). A Delphi process was followed, with consensus being reached when ≥80% of the voting guideline committee members agreed. Recommendations and statements: The only recent guidelines available were for gastrointestinal and pancreatic management. These were reviewed and endorsed after confirming that no more recent relevant papers had been published. Literature searches were performed for additional questions and yielded a variable number of relevant papers depending on the subject addressed. Additional recommendations and statements were formulated. Conclusions: A decade on, the evidence base for recommendations remains poor, and collaborative studies are required to provide better data about this rare condition. Within these restrictions, multisystem, clinical management recommendations for PJS have been formulated
    corecore