1,390 research outputs found
Macropolyhedral boron-containing cluster chemistry. Ligand-induced two-electron variations of intercluster bonding intimacy. Structures of nineteen-vertex[(eta(5)-C5Me5) HIrB18H19(PMe2Ph)] and the related carbene complex [(eta(5)-C5Me5)HIrB18H19{C(NHMe)(2)}]
Addition of PMe2Ph to fused-cluster syn-[(η5-C5Me5)IrB18H20] 1 to give [(η5-C5Me5)HIrB18H19(PMe2Ph)] 3 entails a diminution in the degree of intimacy of the intercluster fusion, rather than retention of inter-subcluster binding intimacy and a nido → arachno conversion of the character of either of the subclusters. Reaction with MeNC gives [(η5-C5Me5)HIrB18H19{C(NHMe)2}] 4 which has a similar structure, but with the ligand now being the carbene {:C(NHMe)2}, resulting from a reductive assembly reaction involving two MeNC residues and the loss of a carbon atom
Optimal Planar Electric Dipole Antenna
Considerable time is often spent optimizing antennas to meet specific design
metrics. Rarely, however, are the resulting antenna designs compared to
rigorous physical bounds on those metrics. Here we study the performance of
optimized planar meander line antennas with respect to such bounds. Results
show that these simple structures meet the lower bound on radiation Q-factor
(maximizing single resonance fractional bandwidth), but are far from reaching
the associated physical bounds on efficiency. The relative performance of other
canonical antenna designs is compared in similar ways, and the quantitative
results are connected to intuitions from small antenna design, physical bounds,
and matching network design.Comment: 10 pages, 15 figures, 2 tables, 4 boxe
Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification
We present a method for automated segmentation of the vasculature in retinal
images. The method produces segmentations by classifying each image pixel as
vessel or non-vessel, based on the pixel's feature vector. Feature vectors are
composed of the pixel's intensity and continuous two-dimensional Morlet wavelet
transform responses taken at multiple scales. The Morlet wavelet is capable of
tuning to specific frequencies, thus allowing noise filtering and vessel
enhancement in a single step. We use a Bayesian classifier with
class-conditional probability density functions (likelihoods) described as
Gaussian mixtures, yielding a fast classification, while being able to model
complex decision surfaces and compare its performance with the linear minimum
squared error classifier. The probability distributions are estimated based on
a training set of labeled pixels obtained from manual segmentations. The
method's performance is evaluated on publicly available DRIVE and STARE
databases of manually labeled non-mydriatic images. On the DRIVE database, it
achieves an area under the receiver operating characteristic (ROC) curve of
0.9598, being slightly superior than that presented by the method of Staal et
al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE
Trans Med Imag; added copyright notic
Spectroscopic Diagnostic of the Footpoints of the Cool loops
Statistically, the cool loop's footpoints are diagnosed using Si~{\sc iv}
resonance lines observations provided by Interface Region Imaging Spectrograph
(IRIS). The intensity and Full Width at Half Maximum (FWHM) of the loop's
footpoints in {--} active regions (ARs) are higher than the
corresponding parameters of footpoints in ARs. However, the Doppler
velocity of footpoints in both ARs are almost similar to each other. The
intensities of footpoints from {--} AR is found to be around 9
times that of AR when both ARs are observed nearly at the same time.
The same intensity difference reduces nearly to half (4 times) when considering
all ARs observed over 9 years. Hence, the instrument degradation affects
comparative intensity analysis. We find that Doppler velocity and FWHM are
well-correlated while peak intensity is neither correlated with Doppler
velocity nor FWHM. The loop's footpoints in - ARs have around
four times more complex Si~{\sc iv} spectral profiles than that of ARs.
The intensity ratios (Si~{\sc iv} 1393.78~{\AA}/1402.77~{\AA}) of the
significant locations of footpoints differ, marginally, (i.e., either less than
1.9 or greater than 2.10) from the theoretical ratio of 2, i.e., 52\% (55\%)
locations in ({--}) ARs significantly deviate from 2.
Hence, we say that more than half of the footpoint locations are either
affected by the opacity or resonance scattering. We conclude that the nature
and attributes of the footpoints of the cool loops in - ARs are
significantly different from those in ARs.Comment: 17 pages, 12 Figures (11 main + 1 appendix), Accepted for Publication
in MNRA
Epidemiological and clinical features of travel-associated cryptosporidiosis
ABSTRACTData concerning the clinical and epidemiological features of travel-associated cryptosporidiosis are lacking. In order to investigate the impact of this disease on travellers' health, a retrospective study was conducted at the Institute of Tropical Medicine, Berlin. In total, 57 cryptosporidial infections were identified between 2000 and 2004, resulting in a prevalence of 2.9% in patients with travel-associated diarrhoea. Travel to south-central Asia, especially India, was associated with a higher prevalence of infection than was travel to other destinations. Clinically, the disease resembled giardiasis, but fever and arthralgias seemed to occur more frequently
Modified embedded-atom method interatomic potentials for the Mg-Al alloy system
We developed new modified embedded-atom method (MEAM) interatomic potentials
for the Mg-Al alloy system using a first-principles method based on density
functional theory (DFT). The materials parameters, such as the cohesive energy,
equilibrium atomic volume, and bulk modulus, were used to determine the MEAM
parameters. Face-centered cubic, hexagonal close packed, and cubic rock salt
structures were used as the reference structures for Al, Mg, and MgAl,
respectively. The applicability of the new MEAM potentials to atomistic
simulations for investigating Mg-Al alloys was demonstrated by performing
simulations on Mg and Al atoms in a variety of geometries. The new MEAM
potentials were used to calculate the adsorption energies of Al and Mg atoms on
Al (111) and Mg (0001) surfaces. The formation energies and geometries of
various point defects, such as vacancies, interstitial defects and
substitutional defects, were also calculated. We found that the new MEAM
potentials give a better overall agreement with DFT calculations and
experiments when compared against the previously published MEAM potentials.Comment: Fixed a referenc
- …