22 research outputs found

    Genome sequence of a Spodoptera frugiperda multiple Nucleopolyhedrovirus isolated from fall armyworm (Spodoptera frugiperda) in Nigeria, west Africa

    Get PDF
    Open Access Article; Published online: 26 Aug 2021We report the entire genome sequence of an isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus from Nigeria, West Africa. The genome is 132,710 bp long and contains 144 open reading frames. The GC content is 40.3% and, based on baculovirus species demarcation criteria, the isolate belongs to the species Spodoptera frugiperda multiple nucleopolyhedrovirus

    On the classification and nomenclature of baculoviruses: A proposal for revision

    Get PDF
    Recent evidence from genome sequence analyses demands a substantial revision of the taxonomy and classification of the family Baculoviridae. Comparisons of 29 baculovirus genomes indicated that baculovirus phylogeny followed the classification of the hosts more closely than morphological traits that have previously been used for classification of this virus family. On this basis, dipteran- and hymenopteran-specific nucleopolyhedroviruses (NPV) should be separated from lepidopteran-specific NPVs and accommodated into different genera. We propose a new classification and nomenclature for the genera within the baculovirus family. According to this proposal the updated classification should include four genera: Alphabaculovirus (lepidopteran-specific NPV), Betabaculovirus (lepidopteran-specific Granuloviruses), Gammabaculovirus (hymenopteran-specific NPV) and Deltabaculovirus (dipteran-specific NPV)

    Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus.

    No full text

    Genomic analysis of Oryctes rhinoceros virus reveals genetic relatedness to Heliothis zea virus I

    No full text
    Oryctes rhinoceros virus (OrV) is an unassigned invertebrate dsDNA virus with enveloped and rod-shaped virions. Two cloned PstI fragments, C and D, of OrV DNA have been sequenced, consisting of 19,805 and 17,146¿bp, respectively, and comprising about 30% of the OrV genome. For each of the two fragments, 20 open reading frames (ORFs) of 150 nucleotides or greater with no or minimal overlap were predicted. Ten of the predicted 40 ORFs revealed significant similarities to Heliothis zea virus 1 (HzV-1) ORFs, of which five, lef-4, lef-5, pif-2, dnapol and ac81, are homologues of conserved core genes in the family Baculoviridae, and one is homologous to baculovirus rr1. A baculovirus odv-e66 homologue is also present in OrV. Five ORFs encode proteins homologous to cellular thymidylate synthase (TS), patatin-like phospholipase, mitochondrial carrier protein, Ser/Thr protein phosphatase, and serine protease, respectively. TS is phylogenetically related to those of eukarya and nucleo-cytoplasmic large dsDNA viruses. However, the remaining 25 ORFs have poor or no sequence matches with the current databases. Both the gene content of the sequenced fragments and the phylogenetic analyses of the viral DNA polymerase suggest that OrV is most closely related to HzV-1. These findings and the re-evaluation of the relationship of HzV-1 to baculoviruses suggest that a new virus genus, Nudivirus, should be established, containing OrV and HzV-1, which are genetically related to members of the family Baculoviridae

    The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-tranded DNA viruses

    No full text
    The Oryctes rhinoceros nudivirus (OrNV) is a dsDNA virus with enveloped, rod-shaped virions. Its genome is 127,615 bp in size and contains 139 predicted protein-coding open reading frames (ORFs). In-depth genome sequence comparisons revealed a varying number of shared gene homologues, not only with other nudiviruses (NVs) and baculoviruses, but also with other arthropod-specific large dsDNA viruses, including the so-called Monodon baculovirus (MBV), the salivary gland hypertrophy viruses (SGHVs) and white spot syndrome virus (WSSV). Nudivirus genomes contain 20 baculovirus core gene homologues associated with transcription (p47, lef-8, lef-9, lef-4, vlf-1, and lef-5), replication (dnapol and helicase), virus structure (p74, pif-1, pif-2, pif-3, 19kda/pif- 4, odv-e56/pif-5, vp91, vp39, and 38K), and unknown functions (ac68, ac81, and p33). Most strikingly, a set of homologous genes involved in peroral infection (p74, pif-1, pif-2, and pif-3) are common to baculoviruses, nudiviruses, SGHVs, and WSSV indicating an ancestral mode of infection in these highly diverged viruses. A gene similar to polyhedrin/granulin encoding the baculovirus occlusion body protein was identified in non-occluded NVs and in Musca domestica SGHV evoking the question of the evolutionary origin of the baculovirus polyhedrin/granulin gene. Based on gene homologies, we further propose that the shrimp MBV is an occluded member of the nudiviruses. We conclude that baculoviruses, NVs and the shrimp MBV, the SGHVs and WSSV share the significant number of conserved genetic functions, which may point to a common ancestry of these viruse

    Small-scale microcosms to detect chemical induced changes in soil nematode communities - effects of crystal proteins and Bt-maize plant material

    No full text
    Höss S, Reiff N, Nguyen HT, Jehle JA, Hermes H, Traunspurger W. Small-scale microcosms to detect chemical induced changes in soil nematode communities - effects of crystal proteins and Bt-maize plant material. Science of the Total Environment. 2014;472:662-671
    corecore