42 research outputs found

    Zur Modellbildung und Simulation reibungserregter Schwingungen in Pkw-Schaltgetrieben

    Get PDF
    Ein neuer Ansatz zur Erklärung reibungserregter Schwingungen in Schaltgetrieben wird vorgestellt und untersucht. Dabei stehen die geometrische Kopplung in der Verzahnung und die Reibkräfte in der Kupplung im Vordergrund. Zunächst wird ein einfaches Starrkörpermodell vorgestellt, welches sukzessive durch neue Komponenten erweitert wird. Neben der Stabilitätsuntersuchung des stationären Verhaltens werden dynamische Lösungen präsentiert

    Zur Modellbildung und Simulation reibungserregter Schwingungen in Pkw-Schaltgetrieben

    Get PDF
    An approach for the reproduction of friction induced vibrations in shift gearboxes in audible frequency range is presented. The research's core is given by follower forces, which arise out of the sliding clutch and gear contact. Firstly, a multi-body dynamic system with few degrees of freedom is presented, which is extended step-by-step. Besides the pure analysis of the stationary solution's stability, dynamic solutions are presented and discussed

    2-Oxoglutarate:NADP(+) Oxidoreductase in Azoarcus evansii: Properties and Function in Electron Transfer Reactions in Aromatic Ring Reduction

    No full text
    The conversion of [(14)C]benzoyl-coenzyme A (CoA) to nonaromatic products in the denitrifying β-proteobacterium Azoarcus evansii grown anaerobically on benzoate was investigated. With cell extracts and 2-oxoglutarate as the electron donor, benzoyl-CoA reduction occurred at a rate of 10 to 15 nmol min(−1) mg(−1). 2-Oxoglutarate could be replaced by dithionite (200% rate) and by NADPH (∼10% rate); in contrast NADH did not serve as an electron donor. Anaerobic growth on aromatic compounds induced 2-oxoglutarate:acceptor oxidoreductase (KGOR), which specifically reduced NADP(+), and NADPH:acceptor oxidoreductase. KGOR was purified by a 76-fold enrichment. The enzyme had a molecular mass of 290 ± 20 kDa and was composed of three subunits of 63 (γ), 62 (α), and 37 (β) kDa in a 1:1:1 ratio, suggesting an (αβγ)(2) composition. The native enzyme contained Fe (24 mol/mol of enzyme), S (23 mol/mol), flavin adenine dinucleotide (FAD; 1.4 mol/mol), and thiamine diphosphate (0.95 mol/mol). KGOR from A. evansii was highly specific for 2-oxoglutarate as the electron donor and accepted both NADP(+) and oxidized viologens as electron acceptors; in contrast NAD(+) was not reduced. These results suggest that benzoyl-CoA reduction is coupled to the complete oxidation of the intermediate acetyl-CoA in the tricarboxylic acid cycle. Electrons generated by KGOR can be transferred to both oxidized ferredoxin and NADP(+), depending on the cellular needs. N-terminal amino acid sequence analysis revealed that the open reading frames for the three subunits of KGOR are similar to three adjacently located open reading frames in Bradyrhizobium japonicum. We suggest that these genes code for a very similar three-subunit KGOR, which may play a role in nitrogen fixation. The α-subunit is supposed to harbor one FAD molecule, two [4Fe-4S] clusters, and the NADPH binding site; the β-subunit is supposed to harbor one thiamine diphosphate molecule and one further [4Fe-4S] cluster; and the γ-subunit is supposed to harbor the CoA binding site. This is the first study of an NADP(+)-specific KGOR. A similar NADP(+)-specific pyruvate oxidoreductase, which contains all domains in one large subunit, has been reported for the mitochondrion of the protist Euglena gracilis and the apicomplexan Cryptosporidium parvum

    Tools and Strategies to Match Peptide-Ligand Receptor Pairs

    No full text

    Endocannabinoid 2-arachidonoylglycerol is elevated in the coronary circulation during acute coronary syndrome.

    No full text
    OBJECTIVES:The endocannabinoid system modulates coronary circulatory function and atherogenesis. The two major endocannabinoids (eCB), 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA), are increased in venous blood from patients with coronary artery disease (CAD). However, given their short half-life and their autocrine/paracrine mechanism of action, eCB levels in venous blood samples might not reflect arterial or coronary eCB concentrations. The aim of this cross-sectional study was to identify the local concentration profile of eCB and to detect whether and how this concentration profile changes in CAD and NSTEMI versus patients without CAD. METHODS AND RESULTS:83 patients undergoing coronary angiography were included in this study. Patients were divided into three groups based on their definite diagnosis of a) no CAD, b) stable CAD, or c) non-ST-segment elevation myocardial infarction (NSTEMI). Blood was drawn from the arterial sheath and the aorta in all patients and additionally distal to the culprit coronary lesion in CAD- and NSTEMI patients. 2-AG levels varied significantly between patient groups and between the sites of blood extraction. The lowest levels were detected in patients without CAD; the highest 2-AG concentrations were detected in NSTEMI patients and in the coronary arteries. Peripheral 2-AG levels were significantly higher in NSTEMI patients (107.4 ± 28.4 pmol/ml) than in CAD- (17.4 ± 5.4 pmol/ml; p < 0.001), or no-CAD patients (23.9 ± 7.1 pmol/ml; p < 0.001). Moreover, coronary 2-AG levels were significantly higher in NSTEMI patients than in CAD patients (369.3 ± 57.2 pmol/ml vs. 240.1 ± 25.3 pmol/ml; p = 0.024). CONCLUSIONS:2-AG showed significant variability in arterial blood samples drawn from distinct locations. Possibly, lesional macrophages synthesise 2-AG locally, which thereby contributes to endothelial dysfunction and local inflammation
    corecore