336 research outputs found
Design and cryogenic operation of a hybrid quantum-CMOS circuit
Silicon-On-Insulator nanowire transistors of very small dimensions exhibit
quantum effects like Coulomb blockade or single-dopant transport at low
temperature. The same process also yields excellent field-effect transistors
(FETs) for larger dimensions, allowing to design integrated circuits. Using the
same process, we have co-integrated a FET-based ring oscillator circuit
operating at cryogenic temperature which generates a radio-frequency (RF)
signal on the gate of a nanoscale device showing Coulomb oscillations. We
observe rectification of the RF signal, in good agreement with modeling
Hanbury Brown Twiss effects in channel mixing normal-superconducting systems
An investigation of the role of the proximity effect in current cross
correlations in multiterminal, channel-mixing, normal-superconducting systems
is presented. The proposed experiment is an electrical analog of the optical
Hanbury Brown Twiss intensity cross correlation experiment. A chaotic quantum
dot is connected via quantum point contacts to two normal and one
superconducting reservoir. For dominating coupling of the dot to the
superconducting reservoir, a magnetic flux of the order of a flux quantum in
the dot suppresses the proximity effect and reverses the sign of the cross
correlations, from positive to negative. In the opposite limit, for a
dominating coupling to the normal reservoirs, the proximity effect is weak and
the cross correlation are positive for a nonideal contact between the dot and
the superconducting reservoir. We show that in this limit the correlations can
be explained with particle counting arguments.Comment: Invited talk at LT2
A hybrid metal/semiconductor electron pump for quantum metrology
Electron pumps capable of delivering a current higher than 100pA with
sufficient accuracy are likely to become the direct mise en pratique of the
possible new quantum definition of the ampere. Furthermore, they are essential
for closing the quantum metrological triangle experiment which tests for
possible corrections to the quantum relations linking e and h, the electron
charge and the Planck constant, to voltage, resistance and current. We present
here single-island hybrid metal/semiconductor transistor pumps which combine
the simplicity and efficiency of Coulomb blockade in metals with the
unsurpassed performances of silicon switches. Robust and simple pumping at
650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage
bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the
calculated value, well within the 1.5e-3 uncertainty of the measurement setup.
Multi-charge pumping can be performed. The simple design fully integrated in an
industrial CMOS process makes it an ideal candidate for national measurement
institutes to realize and share a future quantum ampere
Recommended from our members
IFNγ Inhibits the Cytosolic Replication of Shigella flexneri via the Cytoplasmic RNA Sensor RIG-I
The activation of host cells by interferon gamma (IFNγ) is essential for inhibiting the intracellular replication of most microbial pathogens. Although significant advances have been made in identifying IFNγ-dependent host factors that suppress intracellular bacteria, little is known about how IFNγ enables cells to recognize, or restrict, the growth of pathogens that replicate in the host cytoplasm. The replication of the cytosolic bacterial pathogen Shigella flexneri is significantly inhibited in IFNγ-stimulated cells, however the specific mechanisms that mediate this inhibition have remained elusive. We found that S. flexneri efficiently invades IFNγ-activated mouse embryonic fibroblasts (MEFs) and escapes from the vacuole, suggesting that IFNγ acts by blocking S. flexneri replication in the cytosol. This restriction on cytosolic growth was dependent on interferon regulatory factor 1 (IRF1), an IFNγ-inducible transcription factor capable of inducing IFNγ-mediated cell-autonomous immunity. To identify host factors that restrict S. flexneri growth, we used whole genome microarrays to identify mammalian genes whose expression in S. flexneri-infected cells is controlled by IFNγ and IRF1. Among the genes we identified was the pattern recognition receptor (PRR) retanoic acid-inducible gene I (RIG-I), a cytoplasmic sensor of foreign RNA that had not been previously known to play a role in S. flexneri infection. We found that RIG-I and its downstream signaling adaptor mitochondrial antiviral signaling protein (MAVS)—but not cytosolic Nod-like receptors (NLRs)—are critically important for IFNγ-mediated S. flexneri growth restriction. The recently described RNA polymerase III pathway, which transcribes foreign cytosolic DNA into the RIG-I ligand 5′-triphosphate RNA, appeared to be involved in this restriction. The finding that RIG-I responds to S. flexneri infection during the IFNγ response extends the range of PRRs that are capable of recognizing this bacterium. Additionally, these findings expand our understanding of how IFNγ recognizes, and ultimately restricts, bacterial pathogens within host cells
Defect detection in nano-scale transistors based on radio-frequency reflectometry
Radio-frequency reflectometry in silicon single-electron transistors (SETs)
is presented. At low temperatures (<4 K), in addition to the expected Coulomb
blockade features associated with charging of the SET dot, quasi-periodic
oscillations are observed that persist in the fully depleted regime where the
SET dot is completely empty. A model, confirmed by simulations, indicates that
these oscillations originate from charging of an unintended floating gate
located in the heavily doped polycrystalline silicon gate stack. The technique
used in this experiment can be applied for detailed spectroscopy of various
charge defects in nanoscale SETs and field effect transistorsComment: 3 pages, 3 figure
Full Current Statistics in Diffusive Normal-Superconductor Structures
We study the current statistics in normal diffusive conductors in contact
with a superconductor. Using an extension of the Keldysh Green's function
method we are able to find the full distribution of charge transfers for all
temperatures and voltages. For the non-Gaussian regime, we show that the
equilibrium current fluctuations are enhanced by the presence of the
superconductor. We predict an enhancement of the nonequilibrium current noise
for temperatures below and voltages of the order of the Thouless energy
E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the
normal metal and agrees with experimental data. We demonstrate that the
calculation of the full current statistics is in fact simpler than a concrete
calculation of the noise.Comment: 4 pages, 2 figures (included
Energy dependent counting statistics in diffusive superconducting tunnel junctions
We present an investigation of the energy dependence of the full charge
counting statistics in diffusive
normal-insulating-normal-insulating-superconducting junctions. It is found that
the current in general is transported via a correlated transfer of pairs of
electrons. Only in the case of strongly asymmetric tunnel barriers or energies
much larger than the Thouless energy is the pair transfer uncorrelated. The
second cumulant, the noise, is found to depend strongly on the applied voltage
and temperature. For a junction resistance dominated by the tunnel barrier to
the normal reservoir, the differential shot noise shows a double peak feature
at voltages of the order of the Thouless energy, a signature of an ensemble
averaged electron-hole resonance.Comment: 8 pages, 5 figure
- …