8 research outputs found

    Effects of D-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo

    Get PDF
    N-methyl-d-aspartate receptor (NMDAR) activation can initiate changes in synaptic strength, evident as long-term potentiation (LTP), and is a key molecular correlate of memory formation. Inhibition of d-amino acid oxidase (DAAO) may increase NMDAR activity by regulating d-serine concentrations, but which neuronal and behavioral effects are influenced by DAAO inhibition remain elusive. In anesthetized rats, extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded before and after a theta frequency burst stimulation (TBS) of the Schaffer collateral pathway of the CA1 region in the hippocampus. Memory performance was assessed after training with tests of contextual fear conditioning (FC, mice) and novel object recognition (NOR, rats). Oral administration of 3, 10, and 30 mg/kg 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN) produced dose-related and steady increases of cerebellum d-serine in rats and mice, indicative of lasting inhibition of central DAAO. SUN administered 2 h prior to training improved contextual fear conditioning in mice and novel object recognition memory in rats when tested 24 h after training. In anesthetized rats, LTP was established proportional to the number of TBS trains. d-cycloserine (DCS) was used to identify a submaximal level of LTP (5× TBS) that responded to NMDA receptor activation; SUN administered at 10 mg/kg 3–4 h prior to testing similarly increased in vivo LTP levels compared to vehicle control animals. Interestingly, in vivo administration of DCS also increased brain d-serine concentrations. These results indicate that DAAO inhibition increased NMDAR-related synaptic plasticity during phases of post training memory consolidation to improve memory performance in hippocampal-dependent behavioral tests

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Effect of pulmonary C-fibre afferent stimulation on cardiac vagal neurones in the nucleus ambiguus in anaesthetized cats

    No full text
    It has been demonstrated previously that the vagal bradycardia evoked by activation of pulmonary C-fibres is not respiratory modulated. Experiments were carried out in α-chloralose anaesthetized cats to determine if these cardiac vagal preganglionic neurones (CVPNs) in the nucleus ambiguus (NA), which have respiratory modulated activity, can be activated when pulmonary C-fibre afferents are stimulated by right atrial injections of phenylbiguanide (PBG).Eleven CVPNs with B-fibre axons in the right cardiac vagal branches were identified and found to be localized within or ventrolateral to the nucleus ambiguus. Ionophoretic application of a high current of dl-homocysteic acid (DLH) induced a vagally mediated bradycardia and hypotension in six of eight sites from which CVPNs were recorded.The activity of B-fibre CVPNs, whether spontaneous (n = 4) or induced by ionophoresis of DLH (n = 7) was respiratory modulated, firing perferentially during post-inspiration and stage 2 expiration. This activity also correlated with the rising phase of the arterial blood pressure wave consistent with these CVPNs receiving an arterial baroreceptor input.Right atrial injections of PBG excited nine of eleven CVPNs tested. In eight of these activated neurones the onset latency of the excitation was within the pulmonary circulation time, consistent with being activated only by pulmonary C-fibre afferents. In two neurones the PBG-evoked excitation still occurred when central inspiratory drive was inhibited, as indicated by the disappearance of phrenic nerve activity.In conclusion, B-fibre respiratory modulated CVPNs can be activated following stimulation of pulmonary C-fibre afferents

    Orally bioavailable small molecule drug protects memory in Alzheimer's disease models

    No full text
    Oligomers of beta-amyloid (Aβ) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aβ-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aβ monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aβ1–42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aβ1–42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aβ and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment

    On the Role of DNA Double-Strand Breaks in Toxicity and Carcinogenesis

    No full text
    corecore