9 research outputs found

    Design of an airborne ultrasonic imaging system for the observation of low-frequency surface waves on the human body

    No full text
    L'objectif des travaux présentés dans cette thèse est le développement d'un système d'imagerie ultrasonore fonctionnant dans l'air pour la mesure sans contact des mouvements vibratoires en surface du corps humain. L'étude des vibrations en surface de la peau ouvre plusieurs champs d'application. L'observation de la vitesse d'une onde de surface sur la peau à partir du film de propagation permet de caractériser l'élasticité de la couche superficielle ainsi que ses hétérogénéités. A partir de cette analyse, il est possible de détecter des objets cachés sur ou sous la peau, dans un objectif de sécurité. Une seconde application est l'observation des vibrations de surface engendrées par le battement cardiaque, la respiration et l'onde de pouls. La réalisation d'un premier dispositif monovoie a permis la mesure locale de vibrations de l'ordre de la dizaine de microns. A partir de ces premiers travaux, nous avons construit un imageur ultrasonore 2D dans l'air à haute cadence d'imagerie. Il est constitué d'un réseau carré de 256 microphones et de 12 émetteurs. La principale nouveauté de notre approche repose sur l'imagerie d'une surface spéculaire. En effet, la rugosité de la peau est négligeable comparée aux longueurs d'onde de travail, de l'ordre du centimètre pour limiter l'atténuation dans l'air. Pour répondre à cette contrainte, l'imagerie est réalisée à partir de la formation de voies émission/réception par synthèse d'ouverture en utilisant une émission séquentielle d'ondes sphériques. Après caractérisation du système, nous avons imagé la propagation d'une onde de surface sur un fantôme mimant le corps humain et l'interférence de cette onde avec un objet étranger. Une seconde version de l'imageur 2D, constituée de 36 émetteurs, a permis la mesure de la déformation du thorax lors du battement cardiaque ainsi que la propagation de l'onde de pouls au niveau de la carotide.The aim of the work presented in this dissertation is to develop an airborne ultrasonic system for the contactless measurement of vibrations on the human body surface. The vibration study of the skin surface opens several application fields. The visualization of the surface wave velocity on the skin from the propagation movie allows to characterize the superficial layer elasticity as well as its heterogeneities. From this analysis, objects hidden on or under the skin can be detected for a security purpose. A second application is the observation of the surface vibrations generated by the heartbeat, respiration and pulse wave.The implementation of a first single-channel device allowed the local measurement of vibrations about ten microns order. From this initial work, we developed a 2D airborne ultrasonic imager with high frame rate. It is composed by a 256 microphones square array and by 12 piezoelectric transducers. The main innovation of our approach is the specular surface imaging. Indeed, the skin roughness is negligible compared to the working wavelength, of the centimeter order to limit the air attenuation. To resolve this issue, the imaging process is carried out with an emission/reception beamforming using synthetic aperture and achieved by a sequential emission of spherical waves.After the system characterization, we imaged the surface wave propagation on a phantom mimicking the human body and the interference between this wave and a foreign object. A second version of the 2D imager, composed by 36 emitters, was applied to measure the deformation of the thorax during the heartbeat as well as the pulse wave propagation in the carotid artery

    Conception d'un imageur ultrasonore dans l'air pour la mesure des ondes basses-fréquences en surface du corps humain

    No full text
    The aim of the work presented in this dissertation is to develop an airborne ultrasonic system for the contactless measurement of vibrations on the human body surface. The vibration study of the skin surface opens several application fields. The visualization of the surface wave velocity on the skin from the propagation movie allows to characterize the superficial layer elasticity as well as its heterogeneities. From this analysis, objects hidden on or under the skin can be detected for a security purpose. A second application is the observation of the surface vibrations generated by the heartbeat, respiration and pulse wave.The implementation of a first single-channel device allowed the local measurement of vibrations about ten microns order. From this initial work, we developed a 2D airborne ultrasonic imager with high frame rate. It is composed by a 256 microphones square array and by 12 piezoelectric transducers. The main innovation of our approach is the specular surface imaging. Indeed, the skin roughness is negligible compared to the working wavelength, of the centimeter order to limit the air attenuation. To resolve this issue, the imaging process is carried out with an emission/reception beamforming using synthetic aperture and achieved by a sequential emission of spherical waves.After the system characterization, we imaged the surface wave propagation on a phantom mimicking the human body and the interference between this wave and a foreign object. A second version of the 2D imager, composed by 36 emitters, was applied to measure the deformation of the thorax during the heartbeat as well as the pulse wave propagation in the carotid artery.L'objectif des travaux présentés dans cette thèse est le développement d'un système d'imagerie ultrasonore fonctionnant dans l'air pour la mesure sans contact des mouvements vibratoires en surface du corps humain. L'étude des vibrations en surface de la peau ouvre plusieurs champs d'application. L'observation de la vitesse d'une onde de surface sur la peau à partir du film de propagation permet de caractériser l'élasticité de la couche superficielle ainsi que ses hétérogénéités. A partir de cette analyse, il est possible de détecter des objets cachés sur ou sous la peau, dans un objectif de sécurité. Une seconde application est l'observation des vibrations de surface engendrées par le battement cardiaque, la respiration et l'onde de pouls. La réalisation d'un premier dispositif monovoie a permis la mesure locale de vibrations de l'ordre de la dizaine de microns. A partir de ces premiers travaux, nous avons construit un imageur ultrasonore 2D dans l'air à haute cadence d'imagerie. Il est constitué d'un réseau carré de 256 microphones et de 12 émetteurs. La principale nouveauté de notre approche repose sur l'imagerie d'une surface spéculaire. En effet, la rugosité de la peau est négligeable comparée aux longueurs d'onde de travail, de l'ordre du centimètre pour limiter l'atténuation dans l'air. Pour répondre à cette contrainte, l'imagerie est réalisée à partir de la formation de voies émission/réception par synthèse d'ouverture en utilisant une émission séquentielle d'ondes sphériques. Après caractérisation du système, nous avons imagé la propagation d'une onde de surface sur un fantôme mimant le corps humain et l'interférence de cette onde avec un objet étranger. Une seconde version de l'imageur 2D, constituée de 36 émetteurs, a permis la mesure de la déformation du thorax lors du battement cardiaque ainsi que la propagation de l'onde de pouls au niveau de la carotide

    Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography

    No full text
    International audienceWe present a novel non-contact system for monitoring the heart rate on human subjects with clothes. Our approach is based on vibrocardiography, and measures locally skin displacements. Vibrocardiography with a laser Doppler vibrometer already allows monitoring of this vital sign, but can only be used on bare skin and requires an expensive piece of equipment. We propose here to use an airborne pulse-Doppler ultrasound system operating in the 20-60 kHz range, and comprised of an emitter focusing the ultrasound pulses on skin and a microphone recording the reflected waves. Our implementation was validated in vitro and on two healthy human subjects, using simultaneously laser vibrocardiography and electrocardiography as references. Accurate measurements of the heart rate on clothed skin suggest that our non-contact ultrasonic method could be implemented both inside and outside the clinical environment, and therefore benefit both medical and safety applications

    Airborne ultrasound surface motion camera: application to seismocardiography

    Get PDF
    International audienceThe recent achievements in the accelerometer-based seismocardiography field indicate a strong potential for this technique to address wide variety of clinical needs. Recordings from different locations on the chest can give a more comprehensive observation and interpretation of wave propagation phenomena than a single-point recording, can validate existing modeling assumptions (such as the representation of the sternum as a single solid body), and provide better identifiability for models using richer recordings. Ultimately, the goal is to advance our physiological understanding of the processes to provide useful data to promote cardiovascular health. Accelerometer-based multichannel system is a contact method and laborious for use in practice, also even ultralight accelerometers can cause non-negligible loading effects. We propose a new contactless ultrasound imaging method to measure thoracic and abdominal surface motions, demonstrating that it is adequate for typical seismocardiogram use. The developed method extends non-contact surface-vibrometry to fast 2D mapping by originally combining multi-element airborne ultrasound arrays, a synthetic aperture implementation and pulsed-waves. Experimental results show the ability of the developed method to obtain 2D seismocardiographic maps of the body surface 30×40 cm 2 in dimension, with a temporal sampling rate of several hundred Hz, using ultrasound waves with the central frequency of 40 kHz. Our implementation was validated in-vivo on eight healthy human participants. The shape and position of the zone of maximal absolute acceleration and velocity during the cardiac cycle were also observed. This technology could potentially be used to obtain more complete cardio-vascular information than single-source SCG in and out of clinical environments, due to enhanced identifiability provided by distributed measurements, and observation of propagation phenomena

    Self-organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation

    No full text
    International audienceIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells

    Author Correction: Self‑organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Toward the creation of 2D or 3D clusters of cells in acoustic levitation

    No full text
    International audienceIntroduction Today, three-dimensional (3D) cell cultures tend to replace 2D conventional method because of their more relevant tissue-mimicking characteristics. Indeed, the 3D cell architecture (spheroïd, organoïd, etc) and the microenvironment is closer to In Vivo physiological behaviour [1, 2]. The main difficulties remain in creating a scaffold compatible with the targeted cells and tissues. Bioprinting is one the great objective for tissue engineering. For instance, stereolithography is a 3D printing technology where the freestanding object is built layer by layer with a photosensitive polymer resin through the projection of a UV image in the top plane. In recent promising work, stereolithography has been applied to create 3D hydrogel structures to guide cells like hepatocytes [3]. Nevertheless, ideally, scaffold-free methods are needed. We propose a new method combining microfluidic channels and the acoustic radiation force (ARF) to structure and to control the shape of stem-cells aggregates

    Toward the creation of 2D or 3D clusters of cells in acoustic levitation

    No full text
    International audienceIntroduction Today, three-dimensional (3D) cell cultures tend to replace 2D conventional method because of their more relevant tissue-mimicking characteristics. Indeed, the 3D cell architecture (spheroïd, organoïd, etc) and the microenvironment is closer to In Vivo physiological behaviour [1, 2]. The main difficulties remain in creating a scaffold compatible with the targeted cells and tissues. Bioprinting is one the great objective for tissue engineering. For instance, stereolithography is a 3D printing technology where the freestanding object is built layer by layer with a photosensitive polymer resin through the projection of a UV image in the top plane. In recent promising work, stereolithography has been applied to create 3D hydrogel structures to guide cells like hepatocytes [3]. Nevertheless, ideally, scaffold-free methods are needed. We propose a new method combining microfluidic channels and the acoustic radiation force (ARF) to structure and to control the shape of stem-cells aggregates
    corecore