62 research outputs found

    High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry

    Get PDF
    X-ray phase contrast imaging is a powerful analysis technique for materials science and biomedicine. Here, we report on laboratory grating-based X-ray interferometry employing a microfocus X-ray source and a high Talbot order (35th) asymmetric geometry to achieve high angular sensitivity and high spatial resolution X-ray phase contrast imaging in a compact system (total length <1 m). The detection of very small refractive angles (∼50 nrad) at an interferometer design energy of 19 keV was enabled by combining small period X-ray gratings (1.0, 1.5 and 3.0 µm) and a single-photon counting X-ray detector (75 µm pixel size). The performance of the X-ray interferometer was fully characterized in terms of angular sensitivity and spatial resolution. Finally, the potential of laboratory X-ray phase contrast for biomedical imaging is demonstrated by obtaining high resolution X-ray phase tomographies of a mouse embryo embedded in solid paraffin and a formalin-fixed full-thickness sample of human left ventricle in water with a spatial resolution of 21.5 µm

    Micro-Scale Restraint Methodology for Humidity Induced Swelling Investigated by Phase Contrast X-Ray Tomography

    Get PDF
    A new methodology for restraining the swelling of spruce wood samples in the micrometre range is developed and presented. We show that the restraining device successfully prevents the free swelling of wood during moisture adsorption, thus modifying significantly the anisotropy of swelling and provoking the intended collapse and large deformations of the wood cells at the edges of the sample in contact with the restraining device. The device consists in a slotted cube designed to restrain swelling and is made of PMMA manufactured by laser ablation. The sample undergoing the restraining experiment is imaged with high-resolution synchrotron radiation phase contrast X-Ray Tomographic Microscopy. The deformation of the restraining device itself is only approximately 2μm with respect to a 500μm width in cubes containing latewood samples and half of that in the case of cubes containing earlywood

    X-ray grating interferometry design for the 4D GRAPH-X system

    Get PDF
    The 4D GRAPH-X (Dynamic GRAting-based PHase contrast x-ray imaging) project aims at developing a prototype of an x-ray grating-based phase-contrast imaging scanner in a laboratory setting, which is based on the Moire single-shot acquisition method in order to be optimized for analysing moving objects (in the specific case, a dynamic thorax phantom), that could evolve into a suitable tool for biomedical applications although it can be extended to other application fields. When designing an x-ray Talbot-Lau interferometer, high visibility and sensitivity are two important figures of merit, strictly related to the performance of the system in obtaining high quality phase contrast and dark-field images. Wave field simulations are performed to optimize the setup specifications and construct a high-resolution and high-sensitivity imaging system. In this work, the design of a dynamic imaging setup using a conventional milli-focus x-ray source is presented. Optimization by wave front simulations leads to a symmetric configuration with 5.25 mu m pitch at third Talbot order and 45 keV design energy. The simulated visibility is about 22%. Results from GATE based Monte Carlo simulations show a 19% transmission percentage of the incoming beam into the detector after passing through all the gratings and the sample. Such results are promising in view of building a system optimized for dynamic imaging

    Towards virtual histology with X-ray grating interferometry

    Full text link
    Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology

    Scanning transmission X-ray microscopy with a fast framing pixel detector

    Get PDF
    a b s t r a c t Scanning transmission X-ray microscopy (STXM) is a powerful imaging technique, in which a small X-ray probe is raster scanned across a specimen. Complete knowledge of the complex-valued transmission function of the specimen can be gained using detection schemes whose every-day use, however, is often hindered by the need of specialized configured detectors or by slow or noisy readout of area detectors. We report on sub-50 nm-resolution STXM studies in the hard X-ray regime using the PILATUS, a fully pixelated fast framing detector operated in single-photon counting mode. We demonstrate a range of imaging modes, including phase contrast and dark-field imaging

    Iridium wire grid polarizer fabricated using atomic layer deposition

    Get PDF
    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved

    New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    Get PDF
    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved

    Highly collimated electron beams from double-gate field emitter arrays with large collimation gate apertures

    Full text link
    Electron collimation in field emitter arrays with electron extraction gate and collimation gate electrodes is studied with the goal to develop a high-brightness high current cathode. Using metallic field emitter arrays prepared by the molding method, we fabricated a stacked double-gate device with the two gates differing in diameter by a process utilizing focused-ion beam milling. We measured the field-emission beam characteristics and demonstrated a reduction of the emission angle by a factor of 7.1±0.8 with minimal emission current decrease under collimating conditions, resulting in a current density increase by a factor of 13.9±1.0

    Self-assembly nanostructured gold for high aspect ratio silicon microstructures by metal assisted chemical etching

    Full text link
    Self-assembly gold nanostructured membranes are created to mechanically stabilize the catalyst movement during metal assisted chemical etching. This results in an improved vertical control of the etching profile for high aspect ratio silicon microstructures. The new method is a robust and cheap microfabrication for dense micro-patterns on a large area, such as diffraction gratings for hard X-ray phase contrast imaging and metrology

    Hard X-ray Phase-Contrast Tomographic Nanoimaging

    Full text link
    Synchrotron‐based full‐field tomographic microscopy established itself as a tool for noninvasive investigations. Many beamlines worldwide routinely achieve micrometer spatial resolution while the isotropic 100‐nm barrier is reached and trespassed only by few instruments, mainly in the soft x‐ray regime. We present an x‐ray, full‐field microscope with tomographic capabilities operating at 10 keV and with a 3D isotropic resolution of 144 nm recently installed at the TOMCAT beamline of the Swiss Light Source. Custom optical components, including a beam‐shaping condenser and phase‐shifting dot arrays, were used to obtain an ideal, aperture‐matched sample illumination and very sensitive phase‐contrast imaging. The instrument has been successfully used for the nondestructive, volumetric investigation of single, unstained cells
    corecore