423 research outputs found

    T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems

    Get PDF
    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a MATLABSimulink (The MathWorks Inc.) plug-in for creating and simulating thermodynamic systems and controls. The package contains generic parameterized components that can be combined with a variable input iterative solver and optimization algorithm to create complex system models, such as gas turbines

    Development of a Thermal Management System for Electrified Aircraft

    Get PDF
    This paper describes the development and optimization of a conceptual thermal management system for electrified aircraft. Here, a vertical takeoff and landing (VTOL) vehicle is analyzed with the following electrically sourced heat loads considered: motors, generators, rectifiers, and inverters. The vehicle will employ liquid-cooling techniques in order to acquire, transport, and reject waste heat from the vehicle. The purpose of this paper is to threefold: 1) Present a potential modeling framework for system level thermal management system simulation, 2) Analyze typical system characteristics, and 3) Perform optimization on a system developed for a specific vehicle to minimize weight gain, power utilization, and drag. Additionally, the paper will study the design process, specifically investigating the differences between steady state and transient sizing, comparing simulation techniques with a lower fidelity option and quantifying expected error

    Multipoint Design and Optimization of a Turboshaft Engine for a Tiltwing Turboelectric Vertical Takeoff Landing Air Taxi

    Get PDF
    This paper describes the design of a turboshaft engine for a tiltwing air taxi application. In this case, the tiltwing air taxi is intended to fly a 400 nm mission with up to fifteen passengers. Engine requirements for the concept engine are taken from aircraft system studies where thrust is produced by four propellers driven by electric motors and powered by a single gas turbine engine. The purpose of this paper is to perform a cycle design optimization that minimizes fuel consumption and weight while respecting current technology limitations to meet mission requirements. To achieve results, the engine overall pressure ratio and maximum temperature at the exit of the combustor are set as the design parameters. Several sensitivity studies are also performed to visualize optimization trends. Results of the optimization study show solutions are heavily dependent on engine cooling flow requirements and exact mission requirements. This engine is intended for use in large system optimization research

    Electrical Cable Design for Urban Air Mobility Aircraft

    Get PDF
    Urban Air Mobility (UAM) describes a new type of aviation focused on efficient flight within urban areas for moving people and goods. There are many different configurations of UAM vehicles, but they generally use an electric motor driving a propeller or ducted fan powered by batteries or a hybrid electric power generation system. Transmission cables are used to move energy from the storage or generation system to the electric motors. Though terrestrial power transmission cables are well established technology, aviation applications bring a whole host of new design challenges that are not typical considerations in terrestrial applications. Aircraft power transmission cable designs must compromise between resistance-per-length, weight-per-length, volume constraints, and other essential qualities. In this paper we use a multidisciplinary design optimization to explore the sensitivity of these qualities to a representative tiltwing turboelectric UAM aircraft concept. This is performed by coupling propulsion and thermal models for a given mission criteria. Results presented indicate that decreasing cable weight at the expense of increasing cable volume or cooling demand is effective at minimizing maximum takeoff weight (MTO). These findings indicate that subsystem designers should update their modeling approach in order to contribute to system-level optimality for highly-coupled novel aircraft. Mobility (UAM) vehicles have the potential to change urban and intra-urban transport in new and interesting ways. In a series of two papers Johnson et al.1 and Silva et al.2 presented four reference vehicle configurations that could service different niches in the UAM aviation category. Of those, this paper focuses on the Vertical Take-off and Landing (VTOL) tiltwing configuration shown in Figure 1. This configuration uses a turboelectric power system, feeding power from a turbo-generator through a system of transmission cables to four motors spinning large propellers on the wings. Previous work on electric cable subsystems leaves much yet to be explored, especially in the realm of subsystem coupling. Several aircraft optimization studies1, 3, 4 only considered aircraft electrical cable weight and ignored thermal effects. Electric and hybrid-electric aircraft studies by Mueller et al.5 and Hoelzen et al.6 selected a cable material but did not investigate alternative materials. Advanced cable materials have been examined by a number of authors: Alvarenga7 examined carbon nanotube (CNT) conductors for low-power applications. De Groh8, 9 examined CNT conductors for motor winding applications. Behabtu et al.,10 and Zhao et al.11 examined CNT conductors for a general applications. There were some studies that examined the thermal effects of cables but they did not allow the cable material to change; El-Kady12 optimized ground-cable insulation and cooling subject constraints. Vratny13 selected cable material based on vehicle power demand, and required resulting cable heat to be dissipated by the Thermal Management System (TMS). None of these previous studies allowed for the selection of the cable material based on a system level optimization goal. Instead, they focused on sub-system optimality such as minimum weight, which comes at the expense of incurring additional costs for other subsystems. Dama14 selected overhead transmission line materials using a weighting function and thermal constraints. However, that work was not coupled with any aircraft subsystems like a TMS. The traditional aircraft design approach, which relies on assembling groups of optimal subsystems, breaks down when considering novel aircraft concepts like the tiltwing vehicle. In a large part, this is because novel concepts have a much higher degree of interaction or coupling between subsystems. For example, when a cable creates heat, this heat needs to be dissipated by the TMS, which needs power supplied by the turbine, and delivering the power creates more heat. The cable, the TMS, and the turbine are all coupled. A change to one subsystem will affect all the other subsystems, much to the consternation of subsystem design experts. Multidisciplinary optimization is the design approach that can address these challenges. However, to fully take advantage of this, we must change the way we think about subsystem design. Specifically, we must move away from point design, and focus on creating solution spaces. The work presented in this paper uses the multidisciplinary optimization approach with aircraft level models to study the system-level sensitivity of cable traits: weight-per-length and resistance-per-length. Additionally, we examined the effects of vehicle imposed volume constraints on these traits. This is useful for three purposes: (1) to demonstrate a framework that can perform a coupled analysis between the aircraft thermal and propulsion systems, (2) to provide a method by which future cable designs can be evaluated against each other given a system-level design goal, (3) to provide insight into what cable properties may be promising for future research. This last element is explored given the caveat that the models contained in this analysis do not represent high-fidelity systems. Thus, while we can demonstrate coupling in between systems, the exact system-level sensitivity to a given parameter may change if a subsystem model or the assumptions governing that model change. The organization of this paper is as follows, in Sec II we outline a method to combine the VTOL vehicle design and cable information in order to produce cables sensitivity studies. Results analysis and discussion are contained in Sec III. Conclusions are presented in Sec IV

    Killing spinor initial data sets

    Full text link
    A 3+1 decomposition of the twistor and valence-2 Killing spinor equation is made using the space spinor formalism. Conditions on initial data sets for the Einstein vacuum equations are given so that their developments contain solutions to the twistor and/or Killing equations. These lead to the notions of twistor and Killing spinor initial data. These notions are used to obtain a characterisation of initial data sets whose development are of Petrov type N or D.Comment: 31 pages, submitted to J. Geom. Phy

    Quasi-local mass in the covariant Newtonian space-time

    Full text link
    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, Newtonian theory of gravity gives a well known and an unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian space-time, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate Komar integral, Brown-York quasi-local energy and Dougan-Mason quasi-local mass in the covariant Newtonian space-time. It turns out that Komar integral naturally gives the Newtonian quasi-local mass expression, however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions.Comment: Submit to Class. Quantum Gra

    Multi-Point Design and Optimization of a Turboshaft Engine for a Tiltwing Turboelectric VTOL Air Taxi

    Get PDF
    This paper describes the design of a turboshaft engine for a tiltwing air taxi application. In this case, the tiltwing air taxi is intended to fly a 400-nautical mile mission with up to fifteen passengers. Engine requirements for the concept engine are taken from aircraft system studies where thrust is produced by four propellers driven by electric motors and powered by a single gas turbine engine. The purpose of this paper is to perform a cycle design optimization that minimizes fuel consumption and weight while respecting current technology limitations to meet mission requirements. To achieve results, the engine overall pressure ratio and maximum temperature at the exit of the combustor are set as the design parameters. Several sensitivity studies are also performed to visualize optimization trends. Results of the optimization study show solutions are heavily dependent on engine cooling flow requirements and exact mission requirements. This engine is intended for use in large system optimization research

    An Analysis of the Strayton Engine, a Brayton and Stirling Cycle Recuperating Engine

    Get PDF
    This paper explores the novel Strayton engine concept. This engine combines the cycles of a Brayton engine with that of a Stirling engine to create a highly efficient recuperating gas turbine engine. In the explored case, both Brayton cycle and Stirling cycle engines are used to generate electrical power. Additionally, the Stirling engine is used to draw heat out of the Brayton turbine (acting to cool the turbine blades), while also pumping heat into Brayton cycle just before combustion occurs (acting as the mechanism for recuperation). The purpose of this paper is to detail the system level modeling techniques used to generate the simulation, perform a cycle analysis of the combined cycle engine, identify key technologies and challenges associated with the concept, and compare potential performance gains with existing gas turbine engines and internal combustion engines. Topics such as controls, blade cooling effects, engine weight, and heat transfer using heat pipe are also explored. Results from this work show potential architectures that could provide the required heat transfer rates, potential control strategies, and performance benefits, including efficiency gains between 10% and 3% on engines ranging from 200HP to 670HP with the combined cycle engine

    Load Flow Analysis with Analytic Derivatives for Electric Aircraft Design Optimization

    Get PDF
    Many of the aircraft concepts of the future are exploring the use of hybrid-, turbo- or all-electric propulsion systems to improve performance and decrease environmental impacts. These aircraft concepts range from small rotorcraft for urban air mobility to conventional commercial transports to large blended wing body designs. Developing the conceptual design for these vehicles presents a challenge, however, as traditional aircraft design tools often were not developed to handle these unique propulsion system architectures. Previous studies on these vehicles have therefore relied on relatively simple models of the electrical transmission and distribution system. This paper presents the development of a hybrid AC-DC load flow (or power flow) analysis capability to enhance the conceptual design of these concept vehicles. Specifically, the desire was to create a load flow analysis capability within the OpenMDAO framework that is also being used to develop a set of compatible tools for rapid optimization of conceptual designs. This load flow analysis capability is unique in its flexible object-oriented structure and implementation of analytic derivatives to facilitate the use of solvers and gradient based optimization in the design process. The developed hybrid load flow analysis capability is first verified against a published 13-bus example then used to model the electrical distribution system for a turbo-electric tiltwing aircraft

    Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Get PDF
    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies
    corecore