73 research outputs found

    Characterization and design of C2H2 zinc finger proteins as custom DNA binding domains

    Get PDF
    As the storage medium for the source code of life, DNA is fundamentally linked to all cellular processes. Nature employs hundreds of sequence-specific DNA binding proteins as transcription factors and repressors to regulate the flow of genetic expression and replication. By adapting these DNA-binding domains to target desired genome locations, they can be harnessed to treat diseases by regulating genes and repairing diseased gene sequences. The C2H2 zinc finger motif is perhaps the most promising and versatile DNA binding framework. Each C2H2 zinc finger domain (module) is capable of recognizing approximately three adjacent nucleotide bases in standard B form DNA. Through directed mutagenesis, novel zinc finger modules (ZFMs) can be selected for most of the 64 possible DNA triplets. By assembling multiple ZFMs with the appropriate linkers, zinc finger proteins (ZFPs) can be generated to specifically bind extended DNA sequence motifs. Several methods of varying complexity are currently available for ZFP engineering. ZFPs generated from the relatively simple modular design method often fail to function in vivo. Those generated using the most reliable module subsets, those recognizing triplets with a 5\u27 guanine (GNN), only function successfully only an estimated 50% of the time, while modularly assembled ZFPs comprising primarily non-GNN modules rarely function in vivo. These low success rates are extremely problematic for applications requiring multiple ZFPs that target adjacent sequence motifs. More complex ZFP engineering approaches provide enhanced success rates, as compared to modular design, with the drawback that they are also more labor intensive and require additional biological expertise. In this research we developed and engineered novel ZFPs, analyzed characteristics of functional custom zinc finger proteins and their targets, formulated algorithms predictive of ZFP success for both modular assembly and OPEN (Oligomerized Pool Engineering) selection methods, and generated a web-based server and software tools to aid others in the successful application of this technology

    Rapid Mutation of Endogenous Zebrafish Genes Using Zinc Finger Nucleases Made by Oligomerized Pool ENgineering (OPEN)

    Get PDF
    Background: Customized zinc finger nucleases (ZFNs) form the basis of a broadly applicable tool for highly efficient genome modification. ZFNs are artificial restriction endonucleases consisting of a non-specific nuclease domain fused to a zinc finger array which can be engineered to recognize specific DNA sequences of interest. Recent proof-of-principle experiments have shown that targeted knockout mutations can be efficiently generated in endogenous zebrafish genes via non-homologous end-joining-mediated repair of ZFN-induced DNA double-stranded breaks. The Zinc Finger Consortium, a group of academic laboratories committed to the development of engineered zinc finger technology, recently described the first rapid, highly effective, and publicly available method for engineering zinc finger arrays. The Consortium has previously used this new method (known as OPEN for Oligomerized Pool ENgineering) to generate high quality ZFN pairs that function in human and plant cells. Methodology/Principal Findings: Here we show that OPEN can also be used to generate ZFNs that function efficiently in zebrafish. Using OPEN, we successfully engineered ZFN pairs for five endogenous zebrafish genes: tfr2, dopamine transporter, telomerase, hif1aa, and gridlock. Each of these ZFN pairs induces targeted insertions and deletions with high efficiency at its endogenous gene target in somatic zebrafish cells. In addition, these mutations are transmitted through th

    Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System

    Get PDF
    We have previously reported a simple and customizable CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided Cas9 nuclease (RGN) system that can be used to efficiently and robustly introduce somatic indel mutations in endogenous zebrafish genes. Here we demonstrate that RGN-induced mutations are heritable, with efficiencies of germline transmission reaching as high as 100%. In addition, we extend the power of the RGN system by showing that these nucleases can be used with single-stranded oligodeoxynucleotides (ssODNs) to create precise intended sequence modifications, including single nucleotide substitutions. Finally, we describe and validate simple strategies that improve the targeting range of RGNs from 1 in every 128 basepairs (bps) of random DNA sequence to 1 in every 8 bps. Together, these advances expand the utility of the CRISPR-Cas system in the zebrafish beyond somatic indel formation to heritable and precise genome modifications

    Efficient genome editing in zebrafish using a CRISPR-Cas system

    Get PDF
    In bacteria, foreign nucleic acids are silenced by clustered, regularly interspaced, short palindromic repeats (CRISPR)--CRISPR-associated (Cas) systems. Bacterial type II CRISPR systems have been adapted to create guide RNAs that direct site-specific DNA cleavage by the Cas9 endonuclease in cultured cells. Here we show that the CRISPR-Cas system functions in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies similar to those obtained using zinc finger nucleases and transcription activator-like effector nucleases
    • …
    corecore