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Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 

systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic 

acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can 

be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the 

Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted 

genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using 

ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing 

at 9 of 11 different sites tested, including two for which TALENs previously failed to induce 

alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, 

rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-

guided nucleases for genome editing in a wide range of organisms.

Bacteria and archaea have evolved an elegant adaptive defense mechanism which uses 

clustered regularly interspaced short palindromic repeats (CRISPR), together with CRISPR-

associated (Cas) proteins, to provide acquired resistance to invading viruses and 

plasmids1–3. The type II CRISPR/Cas system relies on uptake of foreign DNA fragments 
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into CRISPR loci4 and subsequent transcription and processing of these CRISPR repeat-

spacer arrays into short CRISPR RNAs (crRNAs)5, which in turn anneal to a trans-

activating crRNA (tracrRNA) and direct sequence-specific silencing of foreign nucleic acid 

by Cas proteins5–7 (Figure 1A). Recent in vitro studies have shown that a single synthetic 

guide RNA (gRNA), consisting of a fusion of crRNA and tracrRNA, can direct Cas9-

mediated cleavage of target DNA6 (Figure 1B). However, an important question that 

currently remains unanswered is whether CRISPR/Cas-based systems can have broad utility 

for performing genome editing in a wide variety of whole organisms as has been shown with 

other technologies such as zinc finger nucleases (ZFNs)8 or transcription activator-like 

effector nucleases (TALENs)9. This capability of ZFNs and TALENs to mediate targeted in 

vivo modification of genomes has enabled both genetic studies and the development of 

disease models in a broad range of organisms that were previously difficult to alter. Here we 

explore the abilities of customizable gRNAs and Cas9 nuclease to efficiently modify 

endogenous genes in vivo in zebrafish embryos and show that this system provides a rapid 

and robust alternative to ZFNs and TALENs for performing genome editing in whole 

organisms.

To establish whether gRNAs can direct Cas9 nuclease-mediated alteration of endogenous 

genes in vivo in zebrafish, we constructed expression vectors that enable T7 RNA 

polymerase-mediated production of a capped, poly-adenylated mRNA encoding the 

monomeric Cas9 nuclease and of a customizable gRNA bearing 20 nucleotides (nts) of 

sequence complementary to a target site (Figure 1C). The sequence of our gRNA differs 

from another used previously in vitro6 in that it contains additional tracrRNA-derived 

sequences at its 3’ end (compare Figure 1B and 1C; also see Supplementary Table 1). For 

initial experiments, we designed and constructed a gRNA that harbors a targeting region 

complementary to a sequence in the fh gene (site #1) (Supplementary Table 2 and 

Methods).

To optimize the quantity of each RNA species to use for genome editing, we microinjected 

varying amounts of fh-targeted gRNA and Cas9-encoding mRNA into one-cell stage 

zebrafish embryos and then assessed the frequency of altered alleles in single embryos using 

a T7 Endonuclease I (T7EI) assay (Methods). We observed robust induction of targeted 

insertion/deletion mutations (indels) at all concentrations of RNAs tested (mean frequencies 

ranging from 10.0 to 52.7%) and in nearly all individual embryos tested (Supplementary 

Table 3). We note that the highest mean frequency of mutations was obtained when injecting 

a solution containing 12.5 ng/µl RNA and 300 ng/µl Cas9-encoding mRNA (Supplementary 

Table 3) and we therefore used these concentrations for all subsequent experiments. 

Sequencing of mutated fh alleles revealed indels that begin within or encompass the 5’ end 

of the DNA sequence complementary to the gRNA (Supplementary Figure 1). This pattern 

of mutations is consistent with the expected induction of a Cas9-induced double-stranded 

break (DSB) at this position6 within the genomic fh target site followed by error-prone 

NHEJ-mediated repair.

To test the robustness of the gRNA/Cas9 system in zebrafish, we constructed ten additional 

gRNAs targeting another sequence in the fh gene (site #2) and sites in nine additional 

endogenous genes (Supplementary Table 2). Strikingly, we found that for eight of the ten 
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sites we targeted, co-injection of gRNA with Cas9-encoding mRNA induced high 

frequencies of targeted indels at these sites in all individual embryos tested (Table 1). Mean 

frequencies of mutagenesis for these eight successfully targeted sites ranged from 24.1% to 

59.4% as judged by T7EI assay (Table 1) and did not appear to depend upon which DNA 

strand (sense or anti-sense) was targeted by the gRNA. Of note, we obtained high 

efficiencies of mutagenesis at two sites in the gsk3b and drd3 genes which we had been 

unable previously to alter using TALENs (Supplementary Table 4). For the remaining six 

successful targets, the mutation rates we observed were comparable to those we previously 

observed at targets in these same genes using ZFNs and/or TALENs (Table 1 and 

Supplementary Table 4). DNA sequencing of mutated alleles for all eight of these target 

sites confirmed the efficient introduction of targeted indels at the expected genomic 

locations (Figure 2 and Supplementary Figure 2). The lengths of indel mutations induced by 

RNA-guided Cas9 are similar to those of mutations induced by ZFNs and TALENs 

previously made by our groups (Supplementary Figure 3a). Furthermore, the nature of the 

mutations (i.e.—the relative abundance of insertions and deletions) also appears to be 

similar among all three platforms (Supplementary Figure 3b). Our results strongly suggest 

that the gRNA/Cas9 platform has a high success rate in zebrafish with a total of 9/11 (or 

>80%) of the sites we targeted showing robust alterations.

RNA-guided nucleases provide an important complementary technology to TALENs and 

ZFNs for genome editing in whole organisms. Only one customized gRNA is required to 

target a specific sequence in contrast to the need to design and assemble two TALENs or 

ZFNs for each site. gRNAs are encoded on short ~100 bp sequences and are therefore much 

simpler and easier to construct than TALENs or ZFNs. The short length of gRNA sequences 

also avoids undesirable complications associated with longer (typically 3 kb or more) and 

highly repetitive TALEN-encoding vectors (e.g. —delivery using viral vectors, challenges 

with DNA sequencing, potential for recombination). Furthermore, we successfully used our 

gRNA/Cas9 reagents to efficiently mutagenize sites in endogenous zebrafish genes that we 

were previously unable to alter previously using TALENs. It will be of interest to determine 

going forward why these TALENs fail to mutagenize their targets with high efficiency and 

also how gRNA-guided Cas9 nucleases are able to successfully alter such sites.

In its current implementation, our gRNA/Cas9 system described above can in principle 

target any sequence of the form 5’-GG-N18-NGG-3’. Such sites occur once in every 128 bps 

of random DNA sequence. Constraints on the range of targetable sequences are due to 

sequence requirements imposed by the T7 promoter used to make gRNAs (GG at the 5’ end 

of the transcript) and by the requirement for a PAM sequence (NGG) in genomic DNA just 

3’ to the target site6. Previous studies suggest that the T7 promoter requirement for a pair of 

guanines at the 5’ end of the transcript could be relaxed to allow for an adenine at either 

position10. Loosening this constraint would enable targeting of sequences of the form 5’-

(G/A)(G/A)-N18-NGG-3’, which occur once in every 32 bps of random DNA sequence. To 

simplify the identification of targetable sites, we have updated our web-based ZiFiT 

Targeter program11, 12 with this new functionality (http://zifit.partners.org/ZiFiT_Cas9). 

Future studies should be directed at performing larger-scale tests of the targeting range of 

the gRNA/Cas9 system, as has been done recently with TALENs in human cells13, and at 
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understanding why some gRNAs fail to mediate efficient sequence alterations (e.g.—the two 

failed gRNAs among the 11 we tested) and whether such failures can be predicted in 

advance.

It is important to emphasize that the modified CRISPR/Cas platform described here can be 

rapidly adopted by any researcher seeking to modify the genome of any organism into which 

RNA can be introduced. Our plasmids expressing short ~100 nt gRNAs with customized 

targeting regions can be easily and rapidly assembled simply by ligating pairs of short 

annealed oligonucleotides into our T7 promoter-based gRNA vector (Methods). This 

process is considerably simpler than other publicly available methods for assembling 

TALEN- or ZFN-encoding plasmids9 and therefore should be readily amenable to 

automation and high-throughput use. The cost of making gRNA expression plasmids will be 

relatively lower than even that of making TALENs since oligonucleotides can be 

commercially ordered in large-scale at low cost and only a simple ligation reaction is 

required. In addition to facilitating target site identification, the updated ZiFiT Targeter 

program also provides the sequences of oligonucleotides required to construct customized 

gRNAs. All plasmids described in this report will be available through the non-profit 

reagent distribution service Addgene (http://www.addgene.org/crispr-cas).

Previous studies from our groups and others have shown efficient germline transmission 

occurs for all engineered ZFNs and TALENs that exhibit somatic mutation rates of 2% or 

greater in the embryos that develop normally after microinjection14–17. We note that all of 

the active gRNA/Cas9 nuclease combinations described in this report exhibit somatic 

mutation rates well above 10% and that these alterations were detected in normally 

developing embryos. Therefore, we expect that germline transmission of Cas9-induced 

mutations will be as efficient as those induced by ZFNs or TALENs.

Another important question to address in future studies will be the genome-wide specificity 

of RNA-guided Cas9 nucleases. A previous in vitro study has suggested that the 3’ end of 

the gRNA target recognition sequence may be the most critical for specificity6 but whether 

this will also be true in cells or in vivo remains to be determined. We note that the toxicity 

induced by gRNA/Cas9-encoding mRNA in zebrafish (as judged by the numbers of 

deformed and dead embryos; Supplementary Figure 4) appeared to be variable among the 

different gRNAs tested with no direct correlation to their abilities to induce indels at the 

intended target sites, a phenomenon we have also observed with ZFNs and TALENs in 

previous studies14, 16, 18, 19. The frequencies of deformed or dead embryos are comparable 

to what we have observed in previous experiments using ZFNs14, 19 and TALENs16, 18.

Our results provide the largest set of endogenous genes modified by RNA-guided Cas9 

nucleases to date and demonstrate the robustness of this platform in vivo for facile and 

efficient genetic modification of zebrafish. In addition, the small size of gRNAs and the 

need for only a single monomeric Cas9 nuclease (rather than pairs of dimeric ZFNs or 

TALENs) are characteristics that make this system potentially ideal for performing 

multiplex genome editing. The demonstration that customized RNA-guided nucleases can be 

used to efficiently induce site-specific modifications in vivo in zebrafish will encourage 

Hwang et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.addgene.org/crispr-cas


wider use of this robust and easy-to-use technology in a broad range of other whole 

organisms.

Methods

Cas9 nuclease expression plasmid

DNA encoding the Cas9 nuclease was amplified from the pMJ806 vector (Addgene Plasmid 

#39312) by PCR using the following primers, which add a T7 promoter site 5’ to the 

translational start codon and a nuclear localization signal at the carboxy-terminal end of the 

Cas9 coding sequence: OMM704: 5’-

ataagaatgcggccgctaatacgactcactatagggagagccgccaccATGGATAAGAAATACTCAATAGG

CTTAG -3’ OMM705: 5’-

gtacataccggtcatcctgcagctccaccgctcgagactttcctcttcttcttgggagaaccGTCACCTCCTAGCTGAC 

-3’ The resulting PCR product was digested with the NotI and AgeI restriction enzymes and 

inserted into plasmid pMLM651. The resulting vector has a unique PmeI restriction site 

positioned 3’ to the end of the Cas9 coding sequence that can be used to linearize the 

plasmids prior to run-off in vitro transcription.

gRNA expression vector

Vector pDR274 harboring a T7 promoter positioned upstream of a partial gRNA sequence 

(full DNA sequence provided in Supplementary Figure 5) was designed and constructed by 

commercial DNA synthesis (Integrated DNA Technologies). To construct plasmids 

encoding gRNAs bearing customized 20 nt targeting sequences, we digested pDR274 with 

BsaI restriction enzyme and then cloned a pair of appropriately designed and annealed 

oligonucleotides into this vector backbone. The annealed oligonucleotides have overhangs 

that are compatible with directional cloning into the BsaI-digested pDR274 vector. The 

sequences of the annealed oligonucleotides are listed in Supplementary Table 2.

Web-based ZiFiT Targeter Software

The ZiFiT Targeter website (http://zifit.partners.org/ZiFiT_Cas9) was updated to include an 

option to identify potential target sites for our RNA-guided Cas9 system. Users can query up 

to 96 sequences at once and indicate the specific nucleotide that they are interested in 

altering. ZiFiT Targeter will analyze these query sequences and return sites that either flank 

the nucleotide of interest, or, are as close to it as possible. If no nucleotide of interest is 

indicated, the program will identify target sites closest to the center of the query sequence. 

By default, ZiFiT Targeter will identify sites that meet the following criteria: 5’-GG-(N)18-

NGG-3’. The 5’ GG dinucleotide is part of the T7 promoter and users can remove this 

constraint if they wish. ZiFiT Targeter also returns a downloadable list of the sequences of 

oligonucleotides that need to be synthesized and cloned into the pDR274 vector to create a 

gRNA expression vector for each target site of interest.

Zebrafish care

All zebrafish care and uses were approved by the Massachusetts General Hospital 

Subcommittee on Research Animal Care.

Hwang et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2013 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://zifit.partners.org/ZiFiT_Cas9


Production of gRNA and Cas9 mRNA

gRNAs were transcribed using the DraI-digested gRNA expression vectors as templates and 

the MAXIscript T7 kit (Life Technologies). The Cas9 mRNA was transcribed using PmeI-

digested Cas9 expression vector and the mMESSAGE mMACHINE T7 ULTRA kit (Life 

Technologies). Following completion of transcription, the poly (A) tailing reaction and 

DNase I treatment were performed according to the manufacturer’s instructions. Both the 

gRNA and the Cas9-encoding mRNA were then purified by LiCl precipitation and re-

dissolved in RNase-free water.

Microinjection of zebrafish embryos and evaluation of nuclease-associated toxicity

gRNA and Cas9-encoding mRNA were co-injected into one-cell stage zebrafish embryos. 

Unless otherwise indicated, each embryo was injected with 2 nl of solution containing 

~12.5ng/µl of gRNA and ~300ng/µl of Cas9 mRNA. On the next day, injected embryos 

were inspected under stereoscope and were classified as dead, deformed or normal 

phenotypes. Only embryos that developed normally were assayed for target site mutations 

using T7 Endonuclease I assay or DNA sequencing (see below). Genomic DNA was 

extracted from either single embryos or a pool of ten embryos as previously described21.

T7 Endonuclease I (T7EI) mutation detection assays

Targeted genomic loci were amplified from genomic zebrafish DNA using primers designed 

to anneal approximately 150 to 200 base pairs upstream and downstream from the expected 

cut site and Phusion Hot Start II high-fidelity DNA polymerase (New England Biolabs) 

according to the manufacturer’s instructions. A list of the primers used in this study is 

provided in Supplementary Table 5. PCR products were purified with Ampure XP 

(Agencourt) according to the manufacturer’s instructions. T7 Endonuclease I assays were 

performed and estimated NHEJ frequencies were calculated as previously described13.

DNA Sequencing of Mutated Endogenous Gene Target Sites

Each target locus was amplified by PCR from the genomic DNA of ten injected embryos. 

The resulting PCR products were cloned into a plasmid using the pGEM-T kit (Promega) or 

Zero Blunt TOPO PCR cloning kit (Life Technologies). Following transformation of these 

reactions, plasmid DNAs isolated from overnight cultures of single colonies were sequenced 

(Massachusetts General Hospital DNA Sequencing Core). Mutated alleles were identified by 

comparison to the wild-type unmodified sequence. Single base substitutions, deletions, or 

insertions were not designated as mutant alleles because we could not exclude the possibility 

that these alterations might also be generated by the PCR amplification process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustrating naturally occurring and engineered RNA-guided nuclease systems. 

(A) Naturally occurring dual RNA-guided Cas9 nuclease. crRNA interacts with the 

complementary strand of the DNA target site harboring an adjacent PAM sequence (green 

and red text, respectively), tracrRNA base pairs with the crRNA, and the overall complex is 

recognized and cleaved by Cas9 nuclease (light blue shape). Folding of the crRNA and 

tracrRNA molecules depicted as predicted by Mfold20 and the association of the crRNA to 

the tracrRNA depicted is partially based on the model previously proposed by Jinek et al6. 

(B) Engineered gRNA/Cas9 system previously used in vitro. gRNA composed of portions of 

the crRNA and tracrRNA from (A) is illustrated interacting with the DNA target site. 

Folding of gRNA is as predicted by Mfold20. (C) Modified engineered gRNA/Cas9 system 

used in vivo in this study. Components are illustrated the same way as in (B) except the 

gRNA contains additional sequence from the 3’ end of the tracrRNA. Folding of gRNA is as 

predicted by Mfold20.
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Figure 2. 
Targeted indel mutations induced by engineered gRNA/Cas9 at the tia1l and gsk3b genes. 

For each gene, the wild-type sequence is shown at the top with the target sites highlighted in 

yellow and the PAM sequence highlighted as red underlined text. Deletions are shown as red 

dashes highlighted in grey and insertions as lower case letters highlighted in blue. The net 

change in length caused by each indel mutation is to the right of each sequence (+, insertion; 

−, deletion). Note that some alterations have both insertions and deletions of sequence and in 

these instances the alterations are enumerated in the parentheses. The number of times each 

mutant allele was isolated is shown in brackets.
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