64 research outputs found

    Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes.

    Get PDF
    Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog <i>Rana temporaria</i> based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes

    Capture and return of sexual genomes by hybridogenetic frogs provide clonal genome enrichment in a sexual species.

    Get PDF
    Hybridogenesis is a reproductive tool for sexual parasitism. Hybridogenetic hybrids use gametes from their sexual host for their own reproduction, but sexual species gain no benefit from such matings as their genome is later eliminated. Here, we examine the presence of sexual parasitism in water frogs through crossing experiments and genome-wide data. We specifically focus on the famous Central-European populations where Pelophylax esculentus males (hybrids of P. ridibundus and P. lessonae) live with P. ridibundus. We identified a system where the hybrids commonly produce two types of clonal gametes (hybrid amphispermy). The haploid lessonae genome is clonally inherited from generation to generation and assures the maintenance of hybrids through a process, in which lessonae sperm fertilize P. ridibundus eggs. The haploid ridibundus genome in hybrids received from P. ridibundus a generation ago, is perpetuated as clonal ridibundus sperm and used to fertilize P. ridibundus eggs, yielding female P. ridibundus progeny. These results imply animal reproduction in which hybridogenetic taxa are not only sexual parasites, but also participate in the formation of a sexual taxon in a remarkable way. This occurs through a process by which sexual gametes are being captured, converted to clones, and returned to sexual populations in one generation

    City-wide wastewater genomic surveillance through the successive emergence of SARS-CoV-2 Alpha and Delta variants

    Get PDF
    Genomic surveillance of SARS-CoV-2 has provided a critical evidence base for public health decisions throughout the pandemic. Sequencing data from clinical cases has helped to understand disease transmission and the spread of novel variants. Genomic wastewater surveillance can offer important, complementary information by providing frequency estimates of all variants circulating in a population without sampling biases. Here we show that genomic SARS-CoV-2 wastewater surveillance can detect fine-scale differences within urban centres, specifically within the city of Liverpool, UK, during the emergence of Alpha and Delta variants between November 2020 and June 2021. Furthermore, wastewater and clinical sequencing match well in the estimated timing of new variant rises and the first detection of a new variant in a given area may occur in either clinical or wastewater samples. The study's main limitation was sample quality when infection prevalence was low in spring 2021, resulting in a lower resolution of the rise of the Delta variant compared to the rise of the Alpha variant in the previous winter. The correspondence between wastewater and clinical variant frequencies demonstrates the reliability of wastewater surveillance. However, discrepancies in the first detection of the Alpha variant between the two approaches highlight that wastewater monitoring can also capture missing information, possibly resulting from asymptomatic cases or communities less engaged with testing programmes, as found by a simultaneous surge testing effort across the city

    Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation.

    Get PDF
    The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation

    Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

    Full text link
    Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate-reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures

    A rapid rate of sex-chromosome turnover and non-random transitions in true frogs.

    Get PDF
    The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the 'hot-potato' model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length

    City-wide wastewater genomic surveillance through the successive emergence of SARS-CoV-2 Alpha and Delta variants

    Get PDF
    Genomic surveillance of SARS-CoV-2 has provided a critical evidence base for public health decisions throughout the pandemic. Sequencing data from clinical cases has helped to understand disease transmission and the spread of novel variants. Genomic wastewater surveillance can offer important, complementary information by providing frequency estimates of all variants circulating in a population without sampling biases. Here we show that genomic SARS-CoV-2 wastewater surveillance can detect fine-scale differences within urban centres, specifically within the city of Liverpool, UK, during the emergence of Alpha and Delta variants between November 2020 and June 2021. Furthermore, wastewater and clinical sequencing match well in the estimated timing of new variant rises and the first detection of a new variant in a given area may occur in either clinical or wastewater samples. The study's main limitation was sample quality when infection prevalence was low in spring 2021, resulting in a lower resolution of the rise of the Delta variant compared to the rise of the Alpha variant in the previous winter. The correspondence between wastewater and clinical variant frequencies demonstrates the reliability of wastewater surveillance. However, discrepancies in the first detection of the Alpha variant between the two approaches highlight that wastewater monitoring can also capture missing information, possibly resulting from asymptomatic cases or communities less engaged with testing programmes, as found by a simultaneous surge testing effort across the city

    Non-Fermi Liquid Regimes and Superconductivity in the Low Temperature Phase Diagrams of Strongly Correlated d- and f-Electron Materials

    Full text link

    Population genomics of an exceptional hybridogenetic system of Pelophylax water frogs.

    Get PDF
    Hybridogenesis can represent the first stage towards hybrid speciation where the hybrid taxon eventually weans off its parental species. In hybridogenetic water frogs, the hybrid Pelophylax kl. esculentus (genomes RL) usually eliminates one genome from its germline and relies on its parental species P. lessonae (genomes LL) or P. ridibundus (genomes RR) to perpetuate in so-called L-E and R-E systems. But not exclusively: some all-hybrid populations (E-E system) bypass the need for their parental species and fulfill their sexual cycle via triploid hybrid frogs. Genetic surveys are essential to understand the great diversity of these hybridogenetic dynamics and their evolution. Here we conducted such study using RAD-sequencing on Pelophylax from southern Switzerland (Ticino), a geographically-isolated region featuring different assemblages of parental P. lessonae and hybrid P. kl. esculentus. We found two types of hybridogenetic systems in Ticino: an L-E system in northern populations and a presumably all-hybrid E-E system in the closely-related southern populations, where P. lessonae was not detected. In the latter, we did not find evidence for triploid individuals from the population genomic data, but identified a few P. ridibundus (RR) as offspring from interhybrid crosses (LR × LR). Assuming P. lessonae is truly absent from southern Ticino, the putative maintenance of all-hybrid populations without triploid individuals would require an unusual lability of genome elimination, namely that P. kl. esculentus from both sexes are capable of producing gametes with either L or R genomes. This could be achieved by the co-existence of L- and R- eliminating lineages or by "hybrid amphigamy", i. e. males and females producing sperm and eggs among which both genomes are represented. These hypotheses imply that polyploidy is not the exclusive evolutionary pathway for hybrids to become reproductively independent, and challenge the classical view that hybridogenetic taxa are necessarily sexual parasites

    Kirkpatrick's Evaluation of Simulation and Debriefing in Health Care Education: A Systematic Review

    No full text
    Background Simulation is an integral component of health care education. Research suggests a positive relationship between simulation and learning outcomes. Kirkpatrick's framework is a four-level model based on the premise that learning resulting from training programs can be classified into four levels: reaction, learning, behavior, and results. Evaluation of educational impact provides valuable feedback to educators that may assist with development and improvement of teaching methods. Method This review is based on the PRISMA guidelines for conducting a systematic review. Inclusion criteria included articles (a) written in the English language, (b) published between 2000 and 2016, (c) describing a debriefing intervention after high-fidelity patient simulation, and (d) based in health care. Results Thirteen studies met criteria for inclusion in the review. Conclusion Results indicated a paucity of studies at the highest levels of evaluation, indicating an area where future research is needed to assist with the development and improvement of simulation education
    corecore