3,248 research outputs found

    Unconventional Fusion and Braiding of Topological Defects in a Lattice Model

    Full text link
    We demonstrate the semiclassical nature of symmetry twist defects that differ from quantum deconfined anyons in a true topological phase by examining non-abelian crystalline defects in an abelian lattice model. An underlying non-dynamical ungauged S3-symmetry labels the quasi-extensive defects by group elements and gives rise to order dependent fusion. A central subgroup of local Wilson observables distinguishes defect-anyon composites by species, which can mutate through abelian anyon tunneling by tuning local defect phase parameters. We compute a complete consistent set of primitive basis transformations, or F-symbols, and study braiding and exchange between commuting defects. This suggests a modified spin-statistics theorem for defects and non-modular group structures unitarily represented by the braiding S and exchange T matrices. Non-abelian braiding operations in a closed system represent the sphere braid group projectively by a non-trivial central extension that relates the underlying symmetry.Comment: 44 pages, 43 figure

    Braiding Statistics and Congruent Invariance of Twist Defects in Bosonic Bilayer Fractional Quantum Hall States

    Full text link
    We describe the braiding statistics of topological twist defects in abelian bosonic bilayer (mmn) fractional quantum Hall (FQH) states, which reduce to the Z_n toric code when m=0. Twist defects carry non-abelian fractional Majorana-like characteristics. We propose local statistical measurements that distinguish the fractional charge, or species, of a defect-quasiparticle composite. Degenerate ground states and basis transformations of a multi-defect system are characterized by a consistent set of fusion properties. Non-abelian unitary exchange operations are determined using half braids between defects, and projectively represent the sphere braid group in a closed system. Defect spin statistics are modified by equating exchange with 4\pi rotation. The braiding S matrix is identified with a Dehn twist (instead of a \pi/2 rotation) on a torus decorated with a non-trivial twofold branch cut, and represents the congruent subgroup \Gamma_0(2) of modular transformations.Comment: 6 pages, 3 figure

    From orbifolding conformal field theories to gauging topological phases

    Full text link
    Topological phases of matter in (2+1) dimensions are commonly equipped with global symmetries, such as electric-magnetic duality in gauge theories and bilayer symmetry in fractional quantum Hall states. Gauging these symmetries into local dynamical ones is one way of obtaining exotic phases from conventional systems. We study this using the bulk-boundary correspondence and applying the orbifold construction to the (1+1) dimensional edge described by a conformal field theory (CFT). Our procedure puts twisted boundary conditions into the partition function, and predicts the fusion, spin and braiding behavior of anyonic excitations after gauging. We demonstrate this for the electric-magnetic self-dual ZN\mathbb{Z}_N gauge theory, the twofold symmetric SU(3)1SU(3)_1, and the S3S_3-symmetric SO(8)1SO(8)_1 Wess-Zumino-Witten theories.Comment: 23 pages, 1 figur

    A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing

    Get PDF
    The financial crisis of 2008 generated interest in more transparent, rules-based strategies for portfolio construction, with Smart beta strategies emerging as a trend among institutional investors. While they perform well in the long run, these strategies often suffer from severe short-term drawdown (peak-to-trough decline) with fluctuating performance across cycles. To address cyclicality and underperformance, we build a dynamic asset allocation system using Hidden Markov Models (HMMs). We test our system across multiple combinations of smart beta strategies and the resulting portfolios show an improvement in risk-adjusted returns, especially on more return oriented portfolios (up to 50%\% in excess of market annually). In addition, we propose a novel smart beta allocation system based on the Feature Saliency HMM (FSHMM) algorithm that performs feature selection simultaneously with the training of the HMM, to improve regime identification. We evaluate our systematic trading system with real life assets using MSCI indices; further, the results (up to 60%\% in excess of market annually) show model performance improvement with respect to portfolios built using full feature HMMs

    AGGREGATION AND CAPITAL ALLOCATION FORMULAS FOR BIVARIATE DISTRIBUTIONS

    Get PDF
    Cossette, Marceau, and Perreault derived formulas for aggregation and capital allocation based on risks following two bivariate exponential distributions. Here, we derive formulas for aggregation and capital allocation for 18 mostly commonly known families of bivariate distributions. This collection of formulas could be a useful reference for financial risk management.</jats:p

    Financial Declines, Financial Behaviors, and Relationship Satisfaction during the Recession

    Get PDF
    Using nationally-representative data collected during the summer of 2009 (N = 575), this study examines how reports of financial declines are associated with financial behaviors and how financial behaviors are associated with relationship satisfaction among cohabiting and married participants. Findings suggested that financial declines were only negatively associated with sound financial management behavior if participants also experienced feelings of economic pressure. Sound financial management behavior was found to be positively associated with marital satisfaction. Finally, sound financial management behavior also moderated the association between financial declines, economic pressure, and relationship satisfaction

    Long-term analysis of the asynchronicity between temperature and precipitation maxima in the United States Great Plains

    Get PDF
    Agriculture is a critical industry to the economy of the Great Plains (GP) region of North America and sensitive to change in weather and climate. Thus, improved knowledge of meteorological and climatological conditions during the growing season and associated variability across spatial and temporal scales is important. A distinct climate feature in the GP is the asynchronicity (AS) between the timing of temperature and precipitation maxima. This study investigated a long-term observational data set to quantify the AS and to address the impacts of climate variability and change. Global Historical Climate Network Daily (GHCN-Daily) data were utilized for this study; 352 GHCN-Daily stations were identified based on specific criteria and the dates of the precipitation and temperature maxima for each year were identified at daily and weekly intervals. An asynchronous difference index (ADI) was computed by determining the difference between these dates averaged over each decade. Analysis of daily and weekly ADI revealed two physically distinct regimes of ADI (positive and negative), with comparable shifts in the timing of both the maximum of precipitation and temperature over all six states within the GP examined when comparing the two different regimes. Time series analysis of decadal average ADI yielded moderate shifts (∼5 to 10 days from linear regression analysis) in ADI in several states with increased variability occurring over much of the study region
    corecore