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Abstract

The financial crisis of 2008 generated interest in more transparent, rules-based strategies for portfolio construction, with smart beta
strategies emerging as a trend among institutional investors. Whilst they perform well in the long run, these strategies often suffer
from severe short-term drawdown (peak-to-trough decline) with fluctuating performance across cycles. To manage short term risk
(cyclicality and underperformance), we build a dynamic asset allocation system using Hidden Markov Models (HMMs). We use
a variety of portfolio construction techniques to test our smart beta strategies and the resulting portfolios show an improvement in
risk-adjusted returns, especially on more return-oriented portfolios (up to 50% of return in excess of market adjusted by relative
risk annually). In addition, we propose a novel smart beta allocation system based on the Feature Saliency HMM (FSHMM)
algorithm that performs feature selection simultaneously with the training of the HMM, to improve regime identification. We
evaluate our systematic trading system with real life assets using MSCI indices; further, the results (up to 60% of return in excess
of market adjusted by relative risk annually) show model performance improvement with respect to portfolios built using full
feature HMMs.

Keywords: Hidden Markov Model, Dynamic Asset Allocation, Portfolio Optimization, Feature Selection, Smart Beta

1. Introduction

Smart beta is a relatively new term that has become ubiquit-
ous in asset management over the last few years. The finan-
cial theory underpinning smart beta, known as factor investing,
emerged in the 1960s, when factors were first identified as being
drivers of equity returns (Agather & Gunthorp, 2017). These
factor returns may be a source of risk and/or improved return,
hence understanding whether any additional risk is adequately
compensated with higher returns is important. (Ang, 2014).

By selecting stocks based on their factor exposures, active
managers can build portfolios with particular factor exposures
and so use factor investing to improve portfolio returns and/or
lower risk, depending on their objectives. Smart beta aims to
achieve these goals at a reduced cost by utilising a transparent,
systematic, rules-based approach, bringing down costs signific-
antly when compared to active management (Asness, 2016).

While smart beta strategies have shown strong perform-
ance in the long run, they often suffer from severe short-term
drawdown (peak-to-trough decline) with fluctuating perform-
ance across cycles (Arnott et al., 2016). These fluctuations can
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arise from extreme macroeconomic conditions, elevated volat-
ility, heightened correlations across multiple markets and un-
certainty monetary and fiscal policy responses.

This paper addresses these concerns by building a regime
switching model using Hidden Markov Models (HMMs). An
introduction to regime switching models applied to macroe-
conomics is given inHamilton (2010); Kim & Nelson (1999)
present regime switching models with application examples to
business cycles and finance. HMMs have become a mainstream
technique to model nonlinearity in time series data that other
methods such as autoregressive models cannot do. (Baum et al.,
1970; Rabiner, 1989). We study how a regime switching frame-
work can be used to detect regimes across factors and, if so, add
value to smart beta strategies. The dominant approach in regime
switching frameworks for asset allocation has been to specify a
static decision rule dependent on the predicted state in advance
(Nystrup et al., 2017b; Reus & Mulvey, 2016; Ang & Sorensen,
2012; Nguyen, 2017; Erlwein et al., 2011; Axelsson, 2017).

An alternative approach is to dynamically optimise a portfo-
lio using information from the inferred regime parameters. We
follow this approach and use the regime information combined
with a variety of portfolio construction strategies to generate
different types of portfolios (more return-oriented, where the re-
turn is part of the optimisation process and more risk- focused,
where only the volatility is taken into account to optimise the
portfolios). Initially we build a dynamic asset allocation (DAA)
system to construct portfolios using a regime switching model
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and perform a systematic analysis using hundreds of combina-
tions of factors by training the HMM with the same factors that
will be used for allocation in the portfolio. Our study shows
that using regime information from the HMM has a better per-
formance than a single regime allocation and we find that more
return-oriented portfolios yield better risk-adjusted returns than
their benchmarks, while the performance of more risk-focused
portfolios show some improvement.

Finally, the common factor in the majority of the work on
regime-switching models in finance considers either a single
or a small set of assets to build the model, with the selection
criteria for the assets usually coming from domain knowledge
(Mulvey & Liu, 2016; Ang & Timmermann, 2012; Nystrup
et al., 2016, 2017a). The reason being that unsupervised feature
selection for HMMs is very limited, with wrapping methods
exhibiting high computational cost or with very few methods
specific for HMMs (Adams & Beling, 2017). In most applica-
tions of HMMs, features are either pre-selected based on expert
knowledge or feature selection is omitted entirely. One of the
few feature selection algorithms developed for HMMs is the
feature saliency HMM (FSHMM) Adams et al. (2016), where
the feature selection process is embedded within the HMM
training. We incorporate this FSHMM into our DAA system
yielding two benefits: (1) by selection during training we ex-
pect to improve regime identification by selecting features that
are state dependent and rejecting state independent features; (2)
it allows incorporation of many features in a model and allows
the algorithm to decide which contribute to regime identifica-
tion, thus avoiding the need for expert knowledge.

The main contributions of this paper are as follows:

1. We build a DAA system using an HMM for regime detec-
tion and perform a systematic study using multiple com-
binations of assets and compare performance with two
benchmarks: their single-regime portfolio counterpart
and an equally weighted portfolio. We show the DAA
system consistently out-performs these benchmarks;

2. We extend our DAA system by incorporating a Feature
Saliency HMM for feature selection, to reduce noise
from spurious data (state independent) that may worsen
model performance, leading to improved regime identi-
fication;

3. We test the DAA system with embedded feature selec-
tion on real life investable indices using MSCI indices
and show an improvement in risk-adjusted return on
strategies built using the DAA system with FSHMM with
respect to strategies built using DAA without feature se-
lection.

This paper is organized as follows: Section 2 overviews pre-
vious work on HMM in finance; Section 3 introduces HMMs
and FSHMMs; data and index construction are described in
Section 4; Section 5 introduces our DAA system, the feature
saliency algorithm and outlines its incorporation into the DAA
system; Section 6 shows the experimental results of the DAA
system, and the incorporation of embedded feature selection;
conclusions and further work are presented in Section 7.

2. Previous work

HMMs have been used extensively in finance to build
regime-based models, since Hamilton proposed use of a
regime-switching model to identify economic cycles using the
GNP series (Hamilton, 1989). As pointed out by Ang & Tim-
mermann (2012) HMMs simultaneously capture multiple char-
acteristics from financial return series such as time-varying cor-
relations, skewness and kurtosis, while also providing good ap-
proximations even in processes for which the underlying model
is unknown (Ang & Bekaert, 2003; Bulla et al., 2011; Bulla &
Bulla, 2006; Nystrup et al., 2015, 2017c). Further, HMMs al-
low for good interpretability of results, as thinking in terms of
regimes is natural in finance. Examples of DAA are Reus &
Mulvey (2016) that uses a HMM to build a dynamic portfolio
using currency futures and Bae et al. (2014) that uses a HMM
to identify market regimes using different asset classes, with re-
gime information helping portfolios to avoid risk during left-tail
events.

Guidolin (2012) provides an extensive review of applica-
tions of Markov switching models in empirical finance cover-
ing stock returns, term structure of default-free interest rates,
exchange rates and joint processes of stock and bond returns.

Outside of asset allocation, HMMs have been used to cap-
ture energy prices dynamics (Dias & Ramos, 2014) to build
credit risk systems, for example Petropoulos et al. (2016) build
a credit rating system using a students’-t HMM, addressing two
problems in current systems: their heavy-tailed actual distribu-
tion and their time-series nature; Elliott et al. (2014) build a
model using a double HMM to extract information about true
credit qualities of firms. Dabrowski et al. (2016) study HMMs
and other Bayesian networks to build early warning systems
to detect systemic banking crises and find that Bayesian meth-
ods provide superior performance on early warning compared
with traditional signal extraction logic models; and Zhou & Ma-
mon (2012) investigate three popular short-rate models and ex-
tend them to capture the switching of economic regimes using
a finite-state Markov chain.

To date, little work has been done on the impact of regime
switching models on factor investing. Among this work, Guid-
olin & Timmermann (2008) found evidence of four economic
regimes in size and value factors that capture time-variations
in mean returns, volatilities and return correlations. Liu et al.
(2011) and Ma et al. (2011) study time-varying risk premiums
using a regime switching model with 3 states. The regime
switching model is trained using six well-established factors
found in the literature and the assets used for allocation are 9
sector ETFs (Exchange Traded Fund). They achieve a Sharpe
ratio of 0.18 but the work covers a short period of testing time
(9 months) and does not consider transaction costs.

3. Theoretical background

This section presents the FSHMM that can simultaneously
train the model and perform feature selection. An introduction
on HMMs and associated notation can be found in Appendix A.
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3.1. FSHMM
The FSHMM considers a feature relevant if its distribution

is dependent on the underlying state and irrelevant if it is inde-
pendent. Given a set of binary variables z = {z1, . . . , zL} that
indicate the relevance of the feature, i.e. zl = 1 if the l-th fea-
ture is relevant and zl = 0 if its irrelevant, the feature saliency
ρl is defined as the probability that the l-th feature is relevant.
Assuming the features are conditionally independent given the
state enables the multivariate Gaussian to be written as a multi-
plication of univariate Gaussians, and the conditional distribu-
tion of yt given z and x can be written as follows:

p(yt |z, xt = i, Λ̄) =

L∏
l=1

r(ylt |µil, σ
2
il)

zl q(ylt |εl, τ
2
l )1−zl (1)

where r(ylt |µil, σ
2
il) is the Gaussian conditional feature distribu-

tion for the l-th feature and q(ylt |εl, τ
2
l ) is the state-independent

feature distribution. The Gaussian FSHMM model parameters
are Λ̄ = (π, A, µ, σ, ρ, ε, τ) where the first four parameters cor-
respond to the regular HMM, ρ is the feature saliency and ε and
τ are the mean and variance of the state independent Gaussian
feature distribution. Figure 1 shows the FSHMM.

Figure 1: FSHMM: squares with xt represent latent variables, circles with yt are
observations and circles with {π, A, ρ, µ, σ, ε, τ} represent model parameters.

The marginal probability of z is:

p(z|Λ) =

L∏
l=1

ρzl
l (1 − ρl)1−zl (2)

The joint probability distribution of yt and z given x is:

p(yt, z|xt = i,Λ) =

L∏
l=1

[ρlr(ylt |µil, σ
2
il)]

zl [(1 − ρl)q(ylt |εl, τ
2
l )]1−zl (3)

The complete likelihood for the FSHMM is given by:

p(x, y, z|Λ) = πx0 p(y0, z|x0,Λ)
L∏

t=1

axt−1,xt p(yt, z|xt,Λ) (4)

The MAP estimation of the FSHMM is similar to the HMM
using EM but the Q function incorporates the hidden variables
associated with feature saliency and can be written as:

Q(Λ,Λ′) = E[log p(x, y, z|Λ)|y,Λ′]

=
∑
x,z

log p(x, y, z|Λ)P(x, z|y,Λ′) (5)

The update steps of the EM algorithm are shown in Ap-
pendix Appendix B and the pseudocode for the MAP FSHMM
formulation is given in Algorithm 11. A detailed description of
the equation derivations and the steps of the algorithm can be
found in Adams (2015).

Algorithm 1 MAP FSHMM Algorithm

1: Select initial values for πi, ai j, µil, σil, εl, τl and ρl for i =

1 . . . I, j = 1 . . . I, and l = 1 . . . L
2: Select initial values for the prior hyperparameters

p̄i, āi j,mil, sil, ζil, ηil, bl, cl, νl, ψl and kl for i = 1 . . . I, j =

1 . . . I, and l = 1 . . . L following B.8 to B.14
3: Select stopping threshold δ and maximum number of itera-

tions M
4: Set absolute percentage change in the posterior probability

between current iteration and previous iteration ∆L to ∞
and the number of iterations it to 1

5: while ∆L > δ and it < M do
6: E-step: calculate probabilities γt(i), ξ(i, j), eilt, hilt, gilt,

uilt, vilt following B.1 to B.7
7: M-step: update parameters πi, ai j, µil, σ

2
il, εl, τ

2
l , ρl fol-

lowing B.15 to B.21
8: ∆L

9: it = it + 1
10: end while
11: Perform feature selection based on ρl and construct reduced

models

As well as the parameters estimated through EM, the model
also has several hyperparameters to set in advance. The most
relevant is the weight parameter kl that can be used as an in-
formative exponential prior on ρ. Setting higher values of kl

for a feature translates into assigning a higher cost to it (for
example, making explicit that collecting the feature is more ex-
pensive), so in order for the algorithm to select the feature, it re-
quires more evidence of its relevance. This can be used either to
reduce the number of selected features or as a proxy for the cost
of selecting a feature in the optimization process. The heuristic
to select a reasonable value of kl is to scale it with the number
of observations as T/4 with T the number of observations.

3.2. Smart beta investing
Smart beta is a systematic, low cost implementation of

factor investing, where securities are selected based on their ex-
posure to an attribute that has been associated with a persistent
higher return in the past, called a factor. Factors can be funda-
mental characteristics of the economy (macroeconomic factors)

1The implementation of the algorithm can be downloaded from: https:

//github.com/elifons/FeatureSaliencyHMM
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Table 1: Description of datasets.

Dataset Date Nr of features Frequency

1: Factor data Jan-1988 to Feb-2016 25 Daily
2: MSCI Enhanced Jan-1999 to Feb-2016 6 Daily

or of companies (style factors). Macroeconomic factors can be
thought of as capturing the broad risks and returns across as-
sets classes, whilst style factors can be thought of as aiming to
explain returns and risks for securities within asset classes.

This paper considers style factors in the equity market;
within these style factors, dozens of indicators have been iden-
tified. The majority can be grouped into families, with style
factors within a family measuring similar characteristics and of-
ten highly correlated (Ang, 2014; Fama & French, 2015; Dim-
son et al., 2017). An example of this is momentum, which
includes factors measuring returns over different periods (3-
months, 6-months, 12-months etc). While there is no univer-
sal definition of these families or the factors that belong in each
family, there are common themes. Typically, families comprise:
value, growth, momentum, quality, size and some sort of volat-
ility/risk/beta measure. There may be variations on this, for
example Dividend Yield is sometimes viewed as a factor fam-
ily in its own right or sometimes it is viewed as a member of
the Value family; sometimes the Value family can be split into
Value and Deep Value.

4. Data

Below is the description of the two datasets used in this
work; Table 1 summarises their main characteristics.

Dataset-1: Daily factor data from S&P500 index
Dataset-1 is a set of style factors which are constructed

based on the S&P 500 universe of US stocks. The style factor
for each individual stock is determined, the universe is ranked
and a portfolio is constructed with the top 20% of stocks and
short positions (negative weights) in the bottom 20% of stocks.
This is repeated each month. The resulting style factor portfo-
lio will have a strong exposure to the factor and no exposure
to the overall market (as the negative holdings offset the pos-
itive weights) - Table 2 shows these. The data is supplied by
a broker and consists of 25 style factors covering a time period
from 1988 to 2016. This dataset is used throughout the analysis.

Dataset-2: Daily MSCI USA enhanced indices
Dataset-2 is supplied by MSCI and consists of a range of

indices which they publish. As with Dataset-1, the individual
style factors are calculated using underlying stocks and their
style factor exposures. These individual style factor indices are
then grouped into six style factor families, and it is these in-
dices that are used in this paper. We use the six MSCI USA
enhanced style indices:: value, low size, momentum, quality,
low volatility and dividend yield Bender et al. (2013). These
have different inception dates, with the most recent beginning

in 1999, which limits the period for which we can use this data-
set to 1999-2016. Figure 2 shows the cumulative return of the
MSCI indices for the testing period, net of market.

The advantage of using a published set of indices (such as
MSCI indices) is that they can be packaged into an easy to pur-
chase product, such as an ETF, by a separate investment com-
pany. As an example, an investor who wants to buy US value
stocks can buy an MSCI US enhanced Value ETF, which would
involve buying one security (the ETF) rather than the underly-
ing stocks. By removing the need to analyse and purchase the
underlying companies, the complexity and cost of implement-
ing a smart beta strategy can be reduced. This allows us to test
our DAA system using real world assets.

Jul 2012 Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

−0.1

−0.05

0

0.05

0.1

0.15

MSCI_USA_Quality MSCI_USA_Enhanced_Value
MSCI_USA_High_Dividend_Yield MSCI_USA_Momentum
MSCI_USA_Minimum_Volatility_(USD) MSCI_USA_Equal_Weighted

C
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Figure 2: Cumulative returns of MSCI USA enhanced factors. Returns are in
excess of the market in USD, for the date range Jan 2012 to Feb 2016.

5. DAA system

Investment on single factor strategies has been shown to
have significant returns over the long term; however, it is
not straightforward to build multi-factor strategies and rotate
factors according to market conditions. Factor indices are time
series data, hence we take advantage of the capacity of HMMs
to identify underlying regimes in sequences of observations and
build a DAA system. We will firstly determine the optimal
number of hidden states to model market regimes and then, in
order to avoid excessive transactions costs through frequent re-
balancing, we optimize the rebalancing signal.

5.1. DAA system architecture
We design a dynamic trading framework with daily evalu-

ations and monthly re-adjustments as shown in Figure 3. Each
day a new vector of returns is added to the training set with
an expanding window, and the state is predicted. Returns are
lagged by one day in order to avoid look-ahead bias. Because
this prediction is noisy, we determine an optimal window of
consecutive days in the new state before the portfolio is rebal-
anced. Once a change of state has been accepted, the vector of
means and covariance matrix from the new state are retrieved
and the portfolio weights optimized using the different portfolio
construction techniques, with transaction costs calculated after
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Table 2: Representative factor indices used for building regime switching frameworks.

# Factor Family # Factor Family

1 Book Value Yield Value 14 Operating Margin Growth-1Yr Quality
2 1 Yr Fwd Earnings Yield Value 15 Operating Margin Growth-3Yr Quality
3 Free Cash Flow Yield Value 16 Historical Free Cash Flow Growth-1Yr Growth
4 Sales Yield Value 17 Historical Free Cash Flow Growth-3Yr Growth
5 Dividend Yield Value 18 Historical DPS Growth-1Yr Growth
6 Historical ROE Quality 19 Historical DPS Growth-3Yr Growth
7 Operating (EBIT) Margin Quality 20 6 Month Price Momentum Momentum
8 AltmanZ Quality 21 12 Month Price Momentum Momentum
9 ROA Quality 22 3 Month Avg Mean EPS Quality

10 Piotroski Quality 23 Size Risk
11 Earnings Growth FY1 to FY2 Growth 24 EPSCV Quality
12 Historical Sales Growth-1Yr Growth 25 Beta Risk
13 Historical Sales Growth-3Yr Growth

rebalance. Once a full month has passed, we add this new batch
of data to the training set with an expanding window and re-
train the model. Figure 4 shows how data is added daily with
an expanding window. While this will not produce immediate
changes in the model parameters (transition matrix and emis-
sion distributions), in time they should change slightly to ac-
commodate the new information. Therefore, we can capture
changes on the dynamics of the system over time.

Figure 3: Dynamic Asset Allocation system diagram.

f1
f2
f3

fL

... ... ...

t0
tn

tn+1
tn+2

+ +

Figure 4: Data scheme.

5.1.1. Model selection
The number of latent states in a HMM has to be set before

training. An option is to use the Bayesian Information criterion
(BIC), a penalized log-likelihood function that can be used for

model selection (Schwarz, 1978). BIC is defined by:

BIC = −2 log p(D|θ̂) + d log(N)

where d is the number of free parameters in the model and
N is the number of samples. Thus, calculating the score over
a range of K states, we can select the model with the lowest
value. Another option is to follow a greedy approach, calculat-
ing performance of the portfolios built with a different number
of regimes and selecting the model with highest performance.

In the financial HMM literature (Guidolin & Timmermann,
2008), regime switching models normally range between 2 and
4 states so we selected random combinations of 5 assets each
(where each asset belongs to a factor family as described in
Table 2) and used these combinations to train an HMM with 2,
3, 4, 5 and 6 hidden states respectively. Keeping the number
of states low allows better interpretability, and with more hid-
den states (5 or 6) we observe that some states only occur for a
few days so is more likely to be caused by over-fitting, and the
covariance calculation is inaccurate for these states. We draw
200 combinations of assets to build portfolios in order to estim-
ate the optimal number of states (more than 15% of the total
number of possible combinations). From each HMM informa-
tion we built different types of portfolios - explained in Section
6.1. The performance of each portfolio was calculated using
the Information Ratio (IR - the ratio between excess return and
standard deviation of excess returns, annualized Bacon (2012));
the plots of BIC and performance as a function of number of
states are shown in Figure 5. The BIC score is quite similar for
states 3 to 6 (4 being the lowest) and is slightly higher for 2
states. While this suggests use of a 4-regime model, perform-
ance of portfolios for 3 and 4 states is significantly lower than
for 2 states, so we have selected a two-state model. Two-state
models can be interpreted as expansion-contraction.

5.1.2. System calibration
The DAA system requires a trained HMM to model regime

changes and the selection of an optimal time window to decide
when a change of state has taken place and the portfolio has to
be rebalanced.

5
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Figure 5: The top plot shows the boxplot of BIC number for different number
of states for 200 combinations of assets: a two state model has a higher BIC
but there is no distinction between three, four and five; the bottom plot shows
performance of portfolios as a function of number of hidden states. The two
state model yields better performance for the majority of portfolios.

For the first part of the work - where we test if the proposed
DAA system adds value to multi-factor strategies - we use mul-
tiple combinations of factors, and calibrate the system for each
combination. From a pool of 25 factor indices we select n assets
randomly and use their returns to train a HMM. As factors can
be grouped into five families (following Table 2), we randomly
select one factor from each group so all families are represen-
ted. This yields a total of 1260 combinations. We then use the
same factors to build the portfolios.

We divide the data set into three subsets: training set (15
years), validation set (9 years) and test set (4 years). In order to
avoid getting stuck in a local maximum we do random initial-
ization with initial parameters calculated from the training data
and select the model with highest score. Figure 6 shows the
process of training, validation and test using the DAA system.

The regime prediction is done by passing the whole series
of returns up to the previous day to decode the most probable
sequence of hidden states, and keep the last value as the state
prediction. This daily prediction is noisier than it would be if
a whole month of returns was passed together, and we cannot
re-balance a portfolio each time a change of state is flagged
without incurring large transaction costs, as quite often this
would mean a daily re-balance. Instead, in the validation set,

Figure 6: Full schematic of calibration and usage of the DAA system for smart
beta investing.

we look for a window of d consecutive days in the same new
state and then we flag a change of regime and re-balance the
portfolio accordingly. Figure 7 shows the performance of a se-
lection of portfolios as a function of the time window d. While
certain combinations of assets perform consistently better than
others with larger windows, smaller windows have the worst
performance in all cases. The main reason is that perform-
ance of portfolios is adjusted for transaction costs, so smaller
windows mean higher portfolio turnover and therefore, higher
costs. We use the training set to identify the optimal window
for each combination of assets.
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Figure 7: A subset of the 1260 portfolios is plotted. The colormap corresponds
to the performance measured by IR (adjusted for transaction costs) as a func-
tion of window size. In the majority of cases performance is low for smaller
windows due to frequent re-balance; performance tends to improve with win-
dow size, 15. However, if the window is too large, performance may decrease
again as it fails to take advantage of more frequent regime changes.

5.2. DAA system with Feature Saliency: FS-DAA

So far, we have proposed a DAA system where the time
series to train the HMM were known in advance, which can be
a limitation. To address this, we propose a novel DAA system
that incorporates an embedded feature selection method during
training, by using a FSHMM, described in Section 3.1. This
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new method, termed FS-DAA, allows selection of features that
contribute to the regime identification, called regime dependent,
and rejects features that do not depend on the regimes.

Figure 8 shows the different stages for training, validation
and test using FS-DAA. FS-DAA takes multiple time series
data and fits an FSHMM, that assigns a saliency to each factor
time series. Higher saliency means that the feature is more rel-
evant and therefore is selected. Because FSHMM proposes that
features are conditionally independent, the fitted model has di-
agonal covariance matrices. We therefore take the selected rel-
evant features and used them to train a HMM with full covari-
ance matrices.

Figure 8: Full schematic of calibration and usage of the FS-DAA system with
embedded feature selection for smart beta investing.

As a first step to assess whether FSHMM can distinguish
between relevant features and noise, we generated irrelevant
features of random noise and added them to our daily factor
data set. We tested this using different numbers of relevant and
irrelevant features (following Adams et al. (2016)), number of
observations and values of kl. For each case, kl was the same for
all features, both relevant and noise. Results are summarized in
Tables C.5 and C.6. In all cases, the algorithm assigned low
values of saliency for the irrelevant features and high values for
the relevant ones.

Secondly, we train a DAA system using all 25 features
from the factor dataset, and we train an FS-DAA system that
takes the 25 features, selects the relevant ones and then trains
a HMM only with those factors and compares the regimes ob-
tained. Finally, using both systems, we build a strategy using an
MSCI USA enhanced family of factor indices. Both models are
trained using 16 years of data (1990-2006) and then retrained
every month until 2016. We use 7.5 years of trading data to
estimate mean and covariance of the MSCI indices for each re-
gime, (Jan 1999-June 2006), to obtain a robust estimation of
the covariance matrix for both regimes. We then use a valid-
ation set of 6 years to select the optimal time window to set a
change of state, and a test set of 4 years.

An advantage of the proposed DAA system is that it al-
lows the data used to train the HMM to detect regimes to be
decoupled from the data used for allocation. This is useful for
factor investing as we can build factors with a long history (as
the factor dataset) and then use real life, investable assets that

have a shorter history (MSCI enhanced data) to build portfolios.

6. Results and analysis

We compare the DAA system performance with baseline
strategies on the large factor dataset. Then, the implementa-
tion of the FSHMM algorithm is discussed. Lastly, we test the
proposed FS-DAA system with real life assets using the MSCI
indices dataset.

6.1. Trading strategies and benchmarks
Instead of constructing one kind of portfolio we build sev-

eral: Risk Parity, Maximum diversification, Minimum Vari-
ance, Max return, Max Sharpe and a modified max return,
where all portfolios are long only, i.e. the weights are always
positive. In most cases, portfolio construction is an optimiza-
tion problem, where the weights of the portfolio are optimized
to maximize/minimize a desired utility function, as described
below.

• Max return: Given an estimated vector of means, it
maximizes the return given a constraint that no asset can
have a weight greater than 80%.

• Dyn: If all estimated mean asset returns are positive, it
weights the assets proportional to their mean, otherwise
it equally weights them.

• Sharpe: A classic mean-variance portfolio that maxim-
izes return given a set level of risk.

• Risk parity: Focuses on allocation of risk: each asset in
the portfolio contributes the same risk as defined by:

w j(Vw) j
√

wVw′

where V is the covariance matrix.

• Max diversification Maximizes the diversification ratio
defined as:

w′Σ
2
√

w′Vw
where Σ is a vector of all asset volatility and V is the
covariance matrix.

• Min Var: finds the portfolio with minimum variance,
defined by:

w′Vw

where V is the covariance matrix.

Risk Parity (RP), Maximum diversification (MD) and Min-
imum Variance (MV) are constructed taking into account only
the covariance matrix, so they can be considered more risk
aware. Max return (MR), Max Sharpe (Sharpe) and modified
max return (Dyn) all consider the mean of the return during the
construction, so they tend to be more aggressive.

For comparison, we built an equally weighted portfolio and
a benchmark for each asset combination. Each benchmark is

7



constructed using the same optimization method as its DAA
system counterpart, but are rebalanced monthly and the covari-
ance matrix is estimated using “single regime” past returns. The
DAA system instead has two covariance matrices, one for each
regime. All portfolios and their benchmarks are constructed
considering transaction costs. Costs are calculated by multiply-
ing portfolio turnover (how much a portfolio is rebalanced) with
a transaction cost of 50bps (0.5%), for each selling and buying.

6.2. DAA system compared to baseline

We first evaluated our DAA system by using 1260 combin-
ations of randomly selected assets to train the HMM and for the
allocation, and compared it with their benchmarks.

Figure 9 shows the performance measured through the
Sortino ratio of all portfolios calculated using the DAA sys-
tem, and their benchmarks. The Sortino ratio is the annualized
return divided by the downside risk, therefore it differentiates
harmful volatility from total overall volatility in contrast with
IR (no risk free asset is considered). We see that all portfolios
constructed using regime information perform better than their
counterpart. Using the mean returns in the optimization steps,
the more return-oriented portfolios show great improvement re-
lative to their benchmark. More risk-focused portfolios show an
improvement with respect to their single-regime counterparts
but show a similar performance to equally weighted portfolios.
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Figure 9: Boxplots corresponding to the Sortino ratio for all portfolios cal-
culated using a HMM (blue) and their benchmarks (orange) and an equally
weighted portfolio (green).

The highest performing portfolio is Sharpe, that considers
both mean and covariance in the construction process. Figure
10-Top shows the annualized return as a function of annualized
volatility for the Sharpe portfolios and their benchmarks. Port-
folios built using HMMs show a higher return and less volatil-
ity than their unconditional counterpart, and higher return and
volatility than the EQ portfolios. Figure 10-Bottom shows the
Sortino ratio for the same portfolios. We see that the HMM
portfolios yield better performance than their benchmarks.

Table 3 shows different performance metrics averaged for
each type of portfolio. In most cases, HMM-portfolios show
better performance than their single-regime benchmarks on all
metrics, and more return-oriented portfolios perform better than
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Figure 10: Top plot shows annualized return as a function of annualized volatil-
ity for Sharpe portfolios built using HMM information (blue), Sharpe portfolios
rebalanced monthly (orange) and EQ portfolios (green). Bottom plot corres-
ponds to the Sortino distribution of the plots. All plots correspond to the test
set (are out of sample).

equally weighted ones. Performance improvement comes both
from higher returns and risk reduction in return-oriented port-
folios. Additionally, skewness and kurtosis are lower than
benchmark returns and maximum drawdown is lower (and for
a shorter period of time) in most cases.

6.3. DAA system with FSHMM

We then used the FSHMM algorithm to detect relevant fea-
tures in our data set of 25 factor indices. To ensure the al-
gorithm is indeed differentiating between relevant and irrel-
evant features, we tested it on feature vectors that consist of
factor returns (relevant features) and random noise (irrelevant
features). Tables C.5 and C.6 in Appendix C show the saliency
of all features for 2 and 3-state models, for different lengths of
the time series and two values of k. In all cases, irrelevant fea-
tures are discarded (saliency values are close to zero) and when
k is small, saliency of the relevant features is close to one.

Figure 11 shows the feature saliencies of all factor return
series for different values of k. As the training set has about
3800 observations, we chose values of k closer to a quarter of
that number following the heuristic proposed in Adams et al.
(2016). The selected features are: Book Value Yield, 1 Yr
Fwd Earnings Yield, Sales Yield, 6 Month Price Momentum,
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Table 3: Average performance of portfolios built using HMMs and their benchmarks. Top portfolios that are more aggressive have a higher risk adjusted return
(measured through IC and Sortino ratios) than their unconditional counterpart and the equally weighted portfolio. Bottom portfolios that are more defensive (only
the covariance matrix is taken into account in the construction process) perform worse than their benchmark counterparts and the EQ portfolio.

Ann ret Ann vol IR Skw kurt D. risk Sortino DD DD days

EQ 0.77 2.88 0.26 -0.14 0.81 2.05 0.37 379 318
Dyn HMM 1.67 4.73 0.34 -0.19 1.35 3.37 0.48 32 291
Dyn Bench -0.60 3.98 -0.14 -0.40 1.68 2.96 -0.19 1136 682

Sharpe HMM 2.31 4.66 0.53 -0.19 1.16 3.29 0.75 429 253
Sharpe Bench -3.14 4.89 -0.64 -0.79 4.49 3.80 -0.82 1375 873

MR HMM 3.19 7.03 0.46 -0.19 1.34 4.98 0.65 35 264
MR Bench -5.03 7.20 -0.69 -0.78 3.71 5.63 -0.88 >4000 1001
MV HMM 0.61 2.41 0.24 -0.14 0.96 1.72 0.35 662 309
MV Bench -0.12 2.24 -0.07 -0.11 0.83 1.61 -0.09 520 511
MD HMM 0.69 2.54 0.26 -0.14 1.01 1.80 0.37 340 306
MD Bench 0.01 2.39 -0.02 -0.12 0.84 1.71 -0.02 454 447
RP HMM 0.63 2.58 0.24 -0.13 1.04 1.84 0.34 212 302
RP Bench 0.20 2.40 0.07 -0.13 1.04 1.72 0.10 475 416

12 Month Price Momentum, EPSCV, Beta. This is of interest
as the selected factors represent four of the six factor families
mentioned in Section 3.2.
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Figure 11: Selected features in the training set (T = 3800 observations) of the
25 factor return series with different values of k. With small values of k all
features are accepted. With k ≥ T/4 the algorithm selects a relevant subset of
features.

For comparison, we trained a HMM using all 25 features
and a model trained with the selected assets. Figure 12 shows
the predicted state and estimated probabilities for the model
after training; we identify state 1 as a “good state”, and state
0 as a “bad state”. The plots clearly identify the 2008 economic
crisis - the first steps developed in August and September of
2007 with some episodes between January and May 2008 be-
fore the big crash in September 2008. Both models identify
spikes of state 0 in the second half of 2007 and transition fully
to state zero during 2008. The model trained with relevant fea-
tures tends to be more sensitive to the distress state - it spends
24% of the time in this state versus 20% of the model trained
with the full set of features. The average duration of state 0 is
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Figure 12: Top plot corresponds to predicted state and state probabilities for
the model trained with relevant features. Bottom plot corresponds to the HMM
trained with all 25 features.

3.8 days vs average length of 3.2 days of the full model. No
smoothing was applied to the predicted probabilities to calcu-
late these values.
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6.4. FS-DAA system with MSCI indices
In this section we evaluate performance of the FS-DAA sys-

tem using a subset of factors from the daily factor dataset after
feature selection, and MSCI enhanced factors for allocation,
and compare it with the DAA system without feature selection,
that trains the HMM with all 25 factors from the dataset.

For simplicity we calculated only Sharpe, MR and Dyn
portfolios, as they showed a significantly better performance
when using a regime switching model in their construction than
risk-focused portfolios and their benchmarks. Figure 13 shows
the cumulative return of these portfolios with a full feature
HMM, FSHMM and the benchmarks constructed without re-
gime information. Both HMM portfolios perform better than
their benchmarks (top plot) and portfolios constructed using an
HMM with feature selection perform slightly better than port-
folios built with a full feature HMM (bottom plot).
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Figure 13: Top plot corresponds to portfolios built using information from an
HMM with feature saliency, portfolios built using information from an HMM
with full features and their benchmarks. Both HMM portfolios accumulate
higher returns than the benchmarks.
Bottom plot shows that cumulative returns of FSHMM and fullHMM portfolios
built using FS have a better performance. Returns are in excess of the market
in USD, for the period Jan 2012 to Feb 2016.

Metrics performance for all portfolios and for the MSCI en-
hanced indices net of market are shown in Table 4. All met-
rics are annualized and are out-of-sample, covering the period
Jan-2012-Feb-2016. The results obtained using DAA and FS-
DAA show a robust improvement with respect to their bench-
marks. We see that only three MSCI indices have a positive IR

in the period, and two of the three FSHMM portfolios show the
highest IR in all cases. Reduction of downside risk is achieved
in most cases that use either a full-feature HMM or a FSHMM
with respect to their benchmarks and the MSCI indices.

7. Conclusions and future work

The main focus of the paper is improvement of smart beta
strategies through the use of regime switching models. The
main contributions from this work are:

1. We have shown that constructing a portfolio using in-
formation from a HMM with two latent states trained
with the same assets that will be used for allocation, im-
proves performance with respect to the same portfolio
built with a single regime approach.
We have tested this by calculating different types of port-
folios, ranging from more risk focused to more aggress-
ive. The improvement is more significant for return-
oriented and balanced portfolios where return or risk-
adjusted return is optimized achieving on average an in-
formation ratio of 50% annually in excess of market,
and is less evident in risk-focused portfolios (Risk Parity,
Minimum Variance and Maximum diversification) with
an improvement on IR of 25% on average annually.

2. We have developed a systematic framework for asset al-
location using an embedded feature selection algorithm
to identify features of relevance to the model. This im-
proves the model’s accuracy and allows for a more ob-
jective approach to portfolio construction in the sense that
it should help to prevent biases in the feature selection
process which is normally done by a financial expert.
We used a FSHMM algorithm to select relevant features
from a pool of well known factor indices and compared
it with a HMM trained with the whole set of assets. Both
models showed agreement on regime identification, with
the model trained using only relevant features being more
sensitive to periods of economic distress.

3. We have tested both models using real, investable assets
through MSCI USA enhanced factor indices. Portfolios
constructed using information from the FSHMM trained
with relevant features show a higher performance than
the same portfolios constructed using a HMM trained
with a full set of features.

An extension of the work to select relevant economic series
could be to include macroeconomic series in the HMM, where
the embedded feature selection could allow for a more precise
identification of economic cycles. This could be of interest for
other asset classes such as fixed income.

In this paper, the evaluation and verification of the pro-
posed approach is mainly based on empirical performance of
the smart beta investment return, as this is the ultimate goal
and verification of any smart beta investment techniques. An
interesting further research problem is to analyze and compute
the standard errors, confidence intervals, and statistical proper-
ties of estimated FSHMM parameters by the proposed learning
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Table 4: Metrics for portfolios built using FSHMM, all assets (HMM), their benchmark and the individual MSCI indices used to build the portfolios. The metrics
covered the period Jan 2012 to Feb 2016.

Ann ret Ann vol IR Skw kurt D. risk Sortino DD DD days

Sharpe FSHMM 0.06 0.50 0.12 -0.71 2.85 0.37 0.16 -94 387
Sharpe HMM -0.11 0.65 -0.16 -0.70 3.84 0.49 -0.22 -164 522
Sharpe Bench -1.62 0.92 -1.76 -2.75 15.0 0.82 -1.98 19825 1452
Dyn FSHMM 0.39 0.65 0.61 -0.41 0.84 0.47 0.84 -52 141

Dyn HMM -0.02 0.60 -0.03 -1.12 9.03 0.45 -0.04 -175 566
Dyn Bench -1.10 1.03 -1.07 -2.76 16.2 0.88 -1.24 -1508 1123

MR FSHMM 2.02 3.20 0.63 -0.39 1.83 2.30 0.88 -82 62
MR HMM 1.85 3.19 0.58 -0.39 1.84 2.29 0.80 -92 62
MR Bench -3.46 3.78 -0.91 -2.71 20.5 3.17 -1.09 -4032 1250

MSCI Quality 0.50 2.76 0.18 0.20 2.02 1.90 0.26 -208 837
MSCI Enhanced Value 0.03 3.97 0.01 0.03 0.86 2.83 0.01 -105 599

MSCI High Dividend Yield -2.16 3.22 -0.67 0.38 0.85 2.24 -0.96 -2374 1317
MSCI Momentum 2.48 4.35 0.57 -0.35 1.42 3.11 0.80 -144 475

MSCI Minimum Volatility -0.89 3.58 -0.25 0.10 0.69 2.52 -0.35 -38371 906
MSCI Equal Weighted -0.27 2.94 -0.09 -0.05 0.74 2.09 -0.13 -135 675

method, and therefore provide further reliability and robustness
testing and verification of the SFHMM approach for smart beta
investing.

A drawback of using HMMs is that the number of latent
states has to be known in advance, or selected through BIC,
which is not always effective, or to use a greedy approach to
choose the model with higher performance. This could be ad-
dressed using an infinite HMM (Beal et al., 2002).
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Appendix A. Hidden Markov Models (HMMs)

HMMs are sequential models that assume an underlying
hidden process modeled by a Markov chain and a sequence of
observed data as a noisy manifestation of this latent process
(Murphy, 2012).

Given o = {y1, ..., yT} the sequence of observed data where
each yt ∈ RL with L the dimension of observations and x =

x1, . . . , xT the latent sequence of states where xt ∈ {1, . . . ,K}
with K the number of latent states. The Gaussian HMM model
parameters are Λ = (π, A, µ, σ) where π and A correspond to the
initial probability vector and transition probability matrix, and
µ and σ are the mean vector and covariance matrix of the state

Figure A.14: HMM: squares with xt represent latent variables, circles with yt
are observations and circles with {π, A, µ, σ} represent model parameters.

dependent L−dimensional Gaussian feature distribution (gener-
ally called emission probabilities, symbolized here by bxt ), the
graphical model of the HMM can be seen in Figure A.14 where
blue squares represent latent variables, orange circles are ob-
servations and green circles represent model parameters. The
complete likelihood can be written as:

p(x, y|Λ) = π(x0)bx0 (y0)
T∏

t=1

A(xt−1, xt)bxt (yt) (A.1)

In this work the sequence of noisy observations are factor
indices returns and the underlying hidden process is the state of
the market that generates them. We assume that the emission
probabilities are Gaussian. While normal distributions are a
poor fit to financial returns, the mixture of normal distributions
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provide a much better fit capturing stylize behaviors including
fat tails and skewness (Nystrup et al., 2015; Ang & Timmer-
mann, 2012).

The training of HMMs is done by the Baum-Welch al-
gorithm, a type of Expectation-Maximization (EM) algorithm
(Rabiner, 1989). The E-step calculates the expected value of
the log-likelihood with respect to the probability laws of the
state, given the data and current model parameters and the M-
step maximizes the expectation computed in the previous step
to update the model parameters. The algorithm iterates between
these two steps until convergence. The expectation of the com-
plete log-likelihood function is given by:

Q(Λ,Λ′) = E[log p(x, y|Λ)|y,Λ′] (A.2)

where Λ are the parameters for the current iteration and Λ′ is
the set of parameters from the previous iteration.

Following Adams et al. (2016), we place priors on the para-
meters and calculate the MAP estimate, so the Q function is
modified by adding the prior on the model parameters, G(Λ):

Q(Λ,Λ′) + log G(Λ) (A.3)

The EM algorithm is as follows, the Q function in A.2 is cal-
culated in the E-step and the equation A.3 is maximized in the
M-step.

Appendix B. Feature saliency HMM algorithm

The FSHMM algorithm as developed by Adams, Beiling
and Cogill has the following EM update steps (for simplicity
we follow their notation):

E-Step

γt(i) = P(xt = i|y,Λ′) (B.1)
ξ(i, j) = P(xt−1 = i, xt = j|y,Λ′) (B.2)

With γt(i) and ξ(i, j) calculated with the forward-backward al-
gorithm. The additional updates are:

eilt = ρlr(ylt |µil, σ
2
il) (B.3)

hilt = (1 − ρl)q(ylt |εl, τ
2
l ) (B.4)

gilt = eilt + hilt (B.5)

uilt =
γiteilt

gilt
(B.6)

vilt = γit − uilt (B.7)

MAP M-step:

For the M-step, the following priors are used, where Dir
corresponds to the Dirichlet distribution,N is the Gaussian dis-
tribution and IG is the inverse gamma distribution:

π ∼ Dir(π|p̄) (B.8)
Ai ∼ Dir(Ai|āi) (B.9)
µil ∼ N(µil|mil, s2

il) (B.10)
σ2

il ∼ IG(σ2
il|ζil, ηil) (B.11)

εl ∼ N(εl|bl, c2
l ) (B.12)

τ2
l ∼ IG(τl|νl, ψl) (B.13)
ρl ∼ eklρl (B.14)

The parameter update equations are listed below:

πi =
γ0(i) + βi − 1∑I

i=1(γ0(i) + βi − 1)
(B.15)

ai j =

∑T
t=1 ξt(i, j) + αi j − 1∑I

j=1(
∑T

t=1 ξt(i, j) + αi, j−1)
(B.16)

µil =
s2

il
∑T

t=0 uiltylt + σ2
ilmil

s2
il
∑T

t=0 uilt + σ2
il

(B.17)

σ2
il =

∑T
t=0 uilt(ylt − µil)2 + 2ηil∑T

t=0 uilt + 2(ζil + 1)
(B.18)

εl =
c2

l
∑T

t=0(
∑I

i=1 vilt)yilt + τ2
l bl

c2
l
∑T

t=0(
∑I

i=1 vilt) + τ2
l

(B.19)

τ2
l =

σT
t=0(
∑I

i=1 vilt)(ylt − εl)2 + sψl

σT
t=0(
∑I

i=1 vilt) + 2(vl + 1)
(B.20)

ρl =
T̂ − 2
√

T̂ 2 − 4kl(
∑T

t=0
∑I

i=1 uilt)

2kl
(B.21)

where T̂ = T + 1 + kl.

Appendix C. FSHMM with real and noise features

Table C.5 shows feature saliency of 5 relevant features and
three irrelevant features generated with N(0, 1) with different
number of observations and number of hidden states. Table C.6
shows the same but with 10 relevant features and 5 added series
of noise, for different states and values of k parameter.
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Table C.5: Feature saliency of five factor returns time series (ρ1 to ρ5) and three irrelevant series of random noise (ρ6 to ρ8), all calculated with k = 50. All irrelevant
features have saliency below 0.25, and most of the financial series have saliency close to one, except ρ3 that has a small saliency in most of the cases.

Case ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

500 points 2 states 0.99 0.97 0.31 0.98 0.97 0.14 0.04 0.05
500 points 3 states 0.99 0.99 0.26 0.98 0.99 0.17 0.04 0.07
2000 points 2 states 0.99 0.99 0.19 0.99 0.99 0.02 0.01 0.02
2000 points 3 states 1.00 1.00 0.12 1.00 1.00 0.07 0.20 0.03

Table C.6: Feature saliency of ten factor returns time series (ρ1 to ρ10) and five irrelevant series of random noise (ρ11 to ρ15). With a small value of k all irrelevant
features are discarded and all relevant features have high saliency. With a larger k, noise features are discarded, but also financial features start being selected. All
series have 3800 observations.

Case ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρ13 ρ14 ρ15

k = 100 2 states 0.99 0.99 0.56 0.99 0.91 1.00 0.99 0.95 0.99 0.97 0.11 0.11 0.04 0.26 0.07
k = 100 3 states 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.24 0.09 0.40 0.10 0.11
k = 380 2 states 0.75 0.03 0.13 0.98 0.44 0.99 0.99 0.17 0.98 0.14 0.05 0.02 0.02 0.01 0.04
k = 380 3 states 1.00 0.37 0.08 0.99 0.55 1.00 1.00 0.13 0.99 0.22 0.04 0.17 0.04 0.05 0.03
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