48 research outputs found

    Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    Get PDF
    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively

    Achieving Zero Stress in Iridium, Chromium, and Nickel Thin Films

    Get PDF
    We examine a method for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight x-ray space telescopes into the regime of sub-arc second resolution that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure, including the existence of a critical pressure that results in zero film stress. This critical pressure scales linearly with the film's density. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we have discovered a similar behavior for iridium. Additionally, we have identified zero stress in iridium shortly after island coalescence. This feature of film growth is used for achieving a total internal stress of -2.89 MPa for a 15.8 nm thick iridium film. The surface roughness of this low-stress film was examined using scanning probe microscopy (SPM) and x-ray reflectivity (XRR) at CuK and these results presented and discussed

    GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models.

    Get PDF
    NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely unknown. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer's disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12-20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments

    2nd Workshop on Interface Phenomena

    No full text
    Diffusion in solids and at interfaces is a very active area of research, as the contributions to this volume attest

    Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy

    No full text
    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature (Tm) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above—as well as below—the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10−2–105 Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm. The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures

    Do Dogs Experience Cognitive Dissonance?

    No full text
    Cognitive dissonance, the mental discomfort experienced when a person hold contradictory beliefs and/or behaviors, has been studied through the effort justification paradigm – wherein people prefer a reward more when they have put more effort towards it. Contrast theory, a behaviorist approach, says this preference is due to the greater difference between participant’s starting and ending state. Dogs participated in a version of the effort justification paradigm designed to test if they experience cognitive dissonance. They alternated between two versions of a task: hearing either a severely or mildly annoying noise before receiving one of two differently colored dog treats from a “treat machine”. Afterwards, they were given a preference test to see if they formed a preference for the treat associated with the severely annoying noise (consistent with the effort justification paradigm). One explanation for the effort justification effect is contrast theory, which was eliminated by assigning dogs to either a contingent or non-contingent treatment. In the contingent treatment, noises preceded treats predictably and the noises and treats both came from the treat machine. In the non-contingent treatment, noises randomly preceded the treats and noises came from the other side of the room. Dogs’ preferences will be explored in light of cognitive dissonance and contrast theories
    corecore