5,330 research outputs found

    Chromatin proteins and RNA are associated with DNA during all phases of mitosis.

    Get PDF
    Mitosis brings about major changes to chromosome and nuclear structure. We used recently developed proximity ligation assay-based techniques to investigate the association with DNA of chromatin-associated proteins and RNAs in Drosophila embryos during mitosis. All groups of tested proteins, histone-modifying and chromatin-remodeling proteins and methylated histones remained in close proximity to DNA during all phases of mitosis. We also found that RNA transcripts are associated with DNA during all stages of mitosis. Reduction of H3K27me3 levels or elimination of RNAs had no effect on the association of the components of PcG and TrxG complexes to DNA. Using a combination of proximity ligation assay-based techniques and super-resolution microscopy, we found that the number of protein-DNA and RNA-DNA foci undergoes significant reduction during mitosis, suggesting that mitosis may be accompanied by structural re-arrangement or compaction of specific chromatin domains

    Simple combination of multiple somatic variant callers to increase accuracy

    Get PDF
    Publications comparing variant caller algorithms present discordant results with contradictory rankings. Caller performances are inconsistent and wide ranging, and dependent upon input data, application, parameter settings, and evaluation metric. With no single variant caller emerging as a superior standard, combinations or ensembles of variant callers have appeared in the literature. In this study, a whole genome somatic reference standard was used to derive principles to guide strategies for combining variant calls. Then, manually annotated variants called from the whole exome sequencing of a tumor were used to corroborate these general principles. Finally, we examined the ability of these principles to reduce noise in targeted sequencing

    Comparison of Anticipatory Glancing and Risk Mitigation of Novice Drivers and Exemplary Drivers when Approaching Curves

    Get PDF
    Novice drivers are overrepresented in run-off-the-road crashes. Indeed, the previous literature demonstrates that novice drivers are less likely to anticipate hazards or maintain attention to the forward roadway and as a result fail to mitigate hazards by slowing. This research was an effort to compare the linked hazard anticipation and hazard mitigation behaviors of novice drivers with exemplary experienced drivers at curves, locations that are known to have a greater crash risk. Each driver navigated three drives in a driving simulator, one of which included a moderate curve left and one of which included a tightening curve right. Experienced drivers made more anticipatory glances and began slowing significantly earlier in the curves than did novice drivers. However, novice drivers who anticipated hazards were much more likely to also mitigate the hazard. The use of these results in a PC-based driver hazard mitigation training program will be discussed

    Observing the Symmetry of Attractors

    Full text link
    We show how the symmetry of attractors of equivariant dynamical systems can be observed by equivariant projections of the phase space. Equivariant projections have long been used, but they can give misleading results if used improperly and have been considered untrustworthy. We find conditions under which an equivariant projection generically shows the correct symmetry of the attractor.Comment: 28 page LaTeX document with 9 ps figures included. Supplementary color figures available at http://odin.math.nau.edu/~jws

    Temporal and stochastic control of Staphylococcus aureus biofilm development.

    Get PDF
    Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated multiplication and exodus ) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. Importance: In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior to tower formation. Unlike the previously described dispersal of cells that occurs after tower development, we found that the mechanism controlling this exodus event is dependent on the Sae regulatory system and independent of Agr. In addition, we revealed that the gene encoding the secreted staphylococcal nuclease was expressed in only a subpopulation of cells, consistent with a model in which biofilms exhibit multicellular characteristics, including the presence of specialized cells and a division of labor that imparts functional consequences to the remainder of the population

    Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus.

    Get PDF
    UNLABELLED: Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. IMPORTANCE: The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillin-resistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings

    Usability and Reliability of Smart Glasses for Secondary Triage During Mass Casualty Incidents

    Get PDF
    Wearable smart glasses like Google Glass provide real-time video and image transmission to remote viewers. The use of Google Glass and other Augmented Reality (AR) platforms in mass casualty incidents (MCIs) can provide incident commanders and physicians at receiving hospitals real-time data regarding injuries sustained by victims at the scene. This real-time data is critical to allocation of hospital resources prior to receiving victims of a MCI. Remote physician participation in real-time MCI care prior to victims’ hospital arrival may improve triage, and direct emergency and critical care services to those most in need. We report the use of Google Glass among first responders to transmit real-time data from a simulated MCI to allow remote physicians to complete augmented secondary triage
    corecore