59 research outputs found

    Calibrating and improving the sensitivity of the LIGO detectors

    Get PDF
    The Laser Interferometer Gravitational wave Observatory (LIGO) is network of three, power recycled Fabry-Perot Michelson interferometers built to detect gravitational waves from astrophysical sources at frequencies between 40 and 6000 Hz. For their fifth science run, from 2005 to 2007, the detectors observed at designed sensitivity, achieving equivalent strain amplitude noise of 3x10^−23 strain/rtHz at 100 Hz. To date, the observatory has not detected gravitational waves. However, even at such sensitivity, the expected detection rate for known astrophysical sources of gravitational waves is likely 0.02 yr^−1. The fundamental noise source of these ground-based detectors limiting the sensitivity below 40 Hz is seismic motion. They use multi-stage passive isolation platforms from which their test masses are suspended from piano wire as single pendula providing isolation from ground motion. The residual test mass motion is controlled by electromagnetic actuators on the suspension system in response to the output of the interferometers, keeping them at their operating point. In the first portion of this thesis, I discuss the absolute calibration of the first generation of LIGO interferometer\u27s gravitational wave readout during their fifth science run, the uncertainty of which is limited by the precision to which we can measure the control system above residual seismic noise. A second generation of detectors, called Advanced LIGO, is currently under construction which will completely replace the first generation. Scheduled to become operational in 2014, they are predicted to improve the sensitivity by ten-fold or more, and will likely improve the detection rate to as much as 40 yr^−1. To achieve this sensitivity at the lower limit of the band, the test masses will be suspended from from multiple cascading pendula. In addition, the multi-stage passive isolation platforms will be replaced with single- and double-stage suspended platforms with built-in active feedback control systems. Prototypes of single-stage active control systems have been in use for two years for a non-invasive upgrade of the LIGO interferometers. In the second portion of this thesis, I present results from these prototypes and demonstrate that their performance can meet the stringent requirement of the second generation of interferometers

    Gravitational-wave astronomy with a physical calibration model

    Get PDF
    We carry out astrophysical inference for compact binary merger events in LIGO-Virgo’s first gravitational-wave transient catalog (GWTC-1) using a physically motivated calibration model. We demonstrate that importance sampling can be used to reduce the cost of what would otherwise be a computationally challenging analysis for signal-to-noise ratios of current gravitational-wave detections. We show that including the physical estimate for the calibration error distribution has negligible impact on the inference of parameters for the events in GWTC-1. Studying a simulated signal with matched filter signal-to-noise ratio SNR = 200, we project that a calibration error estimate typical of GWTC-1 is likely to be negligible for the current generation of gravitational-wave detectors. We argue that other sources of systematic error—from waveforms, prior distributions, and noise modeling—are likely to be more important. Finally, using the events in GWTC-1 as standard sirens, we infer an astrophysically informed improvement on the estimate of the calibration error in the LIGO interferometers

    Database Evaluation for Muscle and Nerve Diseases - DEMAND: An academic neuromuscular coding system

    Get PDF
    Background: A database which documents the diagnosis of neuromuscular patients is useful for determining the types of patients referred to academic centers and for identifying participants for clinical trials and other studies. The ICD-9 or ICD-10 numeric systems are insufficiently detailed for this purpose. Objective: To develop a database for neuromuscular diagnoses Methods: We developed a detailed diagnostic coding system for neuromuscular diseases called DEMAND: Database Evaluation for Muscle and Nerve Diseases that has been adopted by neuromuscular clinics at University of Texas Health Science Center San Antonio (UTHSCSA), Ohio State University (OSU), University of Kansas Medical Center (KUMC), and University of Texas Southwestern (UTSW). At the initial visit, patients are assigned a diagnostic code which can be revised later if appropriate. Fields include patient’s name, date of birth, and diagnostic code. The neuromuscular database consisted of 457 codes. Each code has a prefix (MUS or PNS) followed by a three-digit number. Depending on whether muscle or nerve is primarily involved, there are eight broad groups: motor neuron disease (MUS codes 100-139); neuromuscular junction disorders (MUS 200-217); acquired and hereditary myopathies (MUS 300-600s); acquired and hereditary polyneuropathies (PNS 100-400); mononeuropathies (PNS 500s); plexopathies (PNS 600s); radiculopathies (PNS 700s); and mononeuritis multiplex (PNS 800s). Results: During a period of 10 years, 17,163 of patients were entered (1,752 at UTHSCSA, 1,840 at OSU, 3,699 at KUMC, 9,872 at UTSW). The number of patients in several broad categories are: 3,080 motor neuron disease; 1,575 neuromuscular junction disease; 1,851 muscular dystrophies; 633 inflammatory myopathies; 1,090 hereditary neuropathies; 1,001 immune-mediated polyneuropathies; 620 metabolic/toxic polyneuropathies; 535 mononeuropathies; 296 plexopathies; and 769 radiculopathies. Conclusion: A detailed diagnostic neuromuscular database can be utilized at multiple academic centers. The database should be simple without too many fields to complete, to ensure compliance during busy clinic operations. This database has been very useful in identifying groups of patients for retrospective, observational studies and for prospective treatment studies including trials for Amyotrophic Lateral Sclerosis (ALS), Muscular Dystrophies (MD), Myasthenia Gravis (MG), and retrospective studies of Primary Lateral Sclerosis (PLS), chronic inflammatory demyelinating neuropathy (CIDP), etc

    Characterization of systematic error in Advanced LIGO calibration

    Get PDF
    The raw outputs of the detectors within the Advanced Laser Interferometer Gravitational-Wave Observatory need to be calibrated in order to produce the estimate of the dimensionless strain used for astrophysical analyses. The two detectors have been upgraded since the second observing run and finished the year-long third observing run. Understanding, accounting, and/or compensating for the complex-valued response of each part of the upgraded detectors improves the overall accuracy of the estimated detector response to gravitational waves. We describe improved understanding and methods used to quantify the response of each detector, with a dedicated effort to define all places where systematic error plays a role. We use the detectors as they stand in the first half (six months) of the third observing run to demonstrate how each identified systematic error impacts the estimated strain and constrain the statistical uncertainty therein. For this time period, we estimate the upper limit on systematic error and associated uncertainty to be <7% in magnitude and <4 deg in phase (68% confidence interval) in the most sensitive frequency band 20-2000 Hz. The systematic error alone is estimated at levels of <2% in magnitude and <2 deg in phase.VB and EP acknowledge the support of the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav), Grant Number CE170100004. PBC acknowledges the support of the Spanish Agencia Estatal de Investigaci´on and Ministerio de Ciencia, Innovaci´on y Universidades grants FPA2016- 76821-P the Vicepresidencia i Conselleria d’Innovaci´o, Recerca i Turisme del Govern de les Illes Balears (Grant FPI-CAIB FPI/2134/2018), the Fons Social Europeu 2014–2020 de les Illes Balears, the European Union FEDER funds, and the EU COST actions CA16104, CA16214, CA17137 and CA18108. The authors would like to thank all of the essential workers who put their health at risk during the COVID-19 pandemic, without whom we would not have been able to complete this work. This paper carries LIGO Document Number LIGO–P1900245

    DC readout experiment in Enhanced LIGO

    Get PDF
    The two 4 km long gravitational wave detectors operated by the Laser Interferometer Gravitational-wave Observatory (LIGO) were modified in 2008 to read out the gravitational wave channel using the DC readout form of homodyne detection and to include an optical filter cavity at the output of the detector. As part of the upgrade to Enhanced LIGO, these modifications replaced the radio-frequency (RF) heterodyne system used previously. We describe the motivations for and the implementation of DC readout and the output mode cleaner in Enhanced LIGO. We present characterizations of the system, including measurements and models of the couplings of the noises from the laser source to the gravitational wave readout channel. We show that noise couplings using DC readout are improved over those for RF readout, and we find that the achieved shot-noise-limited sensitivity is consistent with modeled results

    Characterization of systematic error in Advanced LIGO calibration

    Get PDF
    The raw outputs of the detectors within the Advanced Laser Interferometer Gravitational-Wave Observatory need to be calibrated in order to produce the estimate of the dimensionless strain used for astrophysical analyses. The two detectors have been upgraded since the second observing run and finished the year-long third observing run. Understanding, accounting, and/or compensating for the complex-valued response of each part of the upgraded detectors improves the overall accuracy of the estimated detector response to gravitational waves. We describe improved understanding and methods used to quantify the response of each detector, with a dedicated effort to define all places where systematic error plays a role. We use the detectors as they stand in the first half (six months) of the third observing run to demonstrate how each identified systematic error impacts the estimated strain and constrain the statistical uncertainty therein. For this time period, we estimate the upper limit on systematic error and associated uncertainty to be <7%< 7\% in magnitude and <4< 4 deg in phase (68%68\% confidence interval) in the most sensitive frequency band 20-2000 Hz. The systematic error alone is estimated at levels of <2%< 2\% in magnitude and <2< 2 deg in phase

    Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice

    Get PDF
    The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f) < 7.7 × 10[superscript -4](f/900  Hz)[superscript 3], which improves on the previous upper limit by a factor of ~180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio
    corecore