84 research outputs found

    EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin

    Get PDF
    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric (C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo-and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins

    A Preliminary Discussion of the Kinematics of BHB and RR Lyrae Stars near the North Galactic Pole

    Get PDF
    The radial velocity dispersion of 67 RR Lyrae variable and blue horizontal branch (BHB) stars that are more than 4 kpc above the galactic plane at the North Galactic Pole is 110 km/sec and shows no trend with Z (the height above the galactic plane). Nine stars with Z < 4 kpc show a smaller velocity dispersion (40 +/-9 km/sec) as is to be expected if they mostly belong to a population with a flatter distribution. Both RR Lyrae stars and BHB stars show evidence of stream motion; the most significant is in fields RR2 and RR3 where 24 stars in the range 4.0 < Z < 11.0 kpc have a mean radial velocity of -59 +/- 16 km/sec. Three halo stars in field RR 2 appear to be part of a moving group with a common radial velocity of -90 km/sec. The streaming phenomenon therefore occurs over a range of spatial scales. The BHB and RR Lyrae stars in our sample both have a similar range of metallicity (-1.2 < [Fe/H] < -2.2). Proper motions of BHB stars in fields SA 57 (NGP) and the Anticenter field (RR 7) (both of which lie close to the meridional plane of the Galaxy) show that the stars that have Z 4 kpc have a Galactic V motion that is < -200 km/sec and which is characteristic of the halo. Thus the stars that have a flatter distribution are really halo stars and not members of the metal-weak thick-disk.Comment: Accepted for publication in the March 1996 AJ. 15 pages, AASTeX V4.0 latex format (including figures), 2 eps figures, 2 separate AASTeX V4.0 latex table

    Insights into the Electronic Structure of CuII Bound to an Imidazole Analogue of Westiellamide.

    Get PDF
    Three synthetic analogues of westiallamide, HL, have previously been synthesized (HL) that have a common backbone (derived from l-valine) with HL but differ in their heterocyclic rings (imidazole, oxazole, thiazole, and oxazoline). Herein we explore in detail through high-resolution pulsed electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy in conjunction with density functional theory (DFT) the geometric and electronic structures of the mono- and dinuclear Cu complexes of these cyclic pseudo hexapeptides. Orientation-selective hyperfine sublevel correlation, electron nuclear double resonance, and three-pulse electron spin echo envelope modulation spectroscopy of [Cu(HL)(MeOH)] reveal delocalization of the unpaired electron spin onto the ligating and distal nitrogens of the coordinated heterocyclic rings and that they are magnetically inequivalent. DFT calculations confirm this and show similar spin densities on the distal heteroatoms in the heterocyclic rings coordinated to the Cu ion in the other cyclic pseudo hexapeptide [Cu(HL)(MeOH)] complexes. The magnetic inequivalencies in [Cu(HL)(MeOH)] arise from different orientations of the heterocyclic rings coordinated to the Cu ion, and the delocalization of the unpaired electron onto the distal heteroatoms within these N-methylimidazole rings depends upon their location with respect to the Cu dx-y orbital. A systematic study of DFT functionals and basis sets was undertaken to examine the ability to reproduce the experimentally determined spin Hamiltonian parameters. Inclusion of spin-orbit coupling (SOC) using MAG-ReSpect or ORCA with a BHLYP/IGLO-II Wachters setup with SOC corrections and ∼38% Hartree-Fock exchange gave the best predictions of the g and A(Cu) matrices. DFT calculations of the N hyperfine and quadrupole parameters for the distal nitrogens of the coordinated heterocyclic rings in [Cu(HL)(MeOH)] with the B1LYP functional and the SVP basis set were in excellent agreement with the experimental data, though other choices of functional and basis set also provided reasonable values. MCD, EPR, mass spectrometry, and DFT showed that preparation of the dinuclear Cu complex in a 1:1 MeOH/glycerol mixture (necessary for MCD) resulted in the exchange of the bridging methoxide ligand for glycerol with a corresponding decrease in the magnitude of the exchange coupling

    An ecological approach to anomaly detection: the EIA Model.

    Get PDF
    The presented work proposes a new approach for anomaly detection. This approach is based on changes in a population of evolving agents under stress. If conditions are appropriate, changes in the population (modeled by the bioindicators) are representative of the alterations to the environment. This approach, based on an ecological view, improves functionally traditional approaches to the detection of anomalies. To verify this assertion, experiments based on Network Intrussion Detection Systems are presented. The results are compared with the behaviour of other bioinspired approaches and machine learning techniques

    A structural model of a P450-ferredoxin complex from orientation-selective double electron-electron resonance spectroscopy

    Get PDF
    This research was supported by the Engineering & Physical Sciences Research Council (EPSRC) and the Biotechnology & Biological Sciences Research Council (BBSRC), UK (EP/D048559). AMB and EOJD were supported by graduate studentships from the BBSRC (BB/F01709X/1) and NJH and JEL were supported by graduate studentships from the EPSRC, and JEL after her DPhil by EP/D048559. AMB gratefully acknowledges her current fellowship support from the Royal Society and EPSRC for a Dorothy Hodgkin Fellowship (DH160004). JRH acknowledges support from the ARC (FT120100421) and the Centre for Advanced Imaging, The University of Queensland.Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C–H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [Fe2S2] cluster-binding loop and the α3 helix, and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [Fe2S2] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.PostprintPeer reviewe

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Preface

    No full text

    Optimizing the transformation of HYSCORE data using the maximum entropy algorithm

    No full text
    Non-uniform sampling (NUS) in combination with the Maximum Entropy (MaxEnt) algorithm as applied to multi-dimensional NMR data has been thoroughly investigated and the NUS approach shown to provide significant sensitivity improvements as compared to methods using uniformly sampled (US) data and the discrete Fourier transform (DFT). Hyperfine sublevel correlation (HYSCORE) is a standard pulse EPR experiment that can potentially benefit greatly from this approach, but the data present unique challenges as compared to NMR. HYSCORE data typically exhibit a very large range of peak intensities, signals are in the form of irregularly shaped ridges with variable intensities, and time traces are generally truncated to save measurement time. MaxEnt has the advantageous properties that it does not require US data, dampens weak signals (noise) and does not suffer from windowing artifacts due to truncation of the time traces. Critical to the success of the MaxEnt algorithm is the choice of the two input parameters aim and def which describe the data noise and contribution of entropy in the optimization, respectively. In this paper we expand our preliminary study on the application of MaxEnt to the reconstruction of HYSCORE spectra to include a detailed analysis on sensitivity to detect weak peaks, investigate the non-linearity of the transformation and ascertain if it can be characterized by the introduction of synthetic peaks, and define a general range for the choice of aim and def. Furthermore, the ability of the MaxEnt method to remove windowing artefacts in uniformly sampled truncated HYSCORE data is described
    • …
    corecore