15,094 research outputs found

    Early English Carols and the Macaronic Hymn

    Get PDF

    Estimating the Impact of State Policies and Institutions with Mixed-Level Data

    Get PDF
    Researchers often seek to understand the effects of state policies or institutions on individual behavior or other outcomes in sub-state-level observational units (e.g., election results in state legislative districts). However, standard estimation methods applied to such models do not properly account for the clustering of observations within states and may lead researchers to overstate the statistical significance of state-level factors. We discuss the theory behind two approaches to dealing with clusteringclustered standard errors and multilevel modeling. We then demonstrate the relevance of this topic by replicating a recent study of the effects of state post-registration laws on voter turnout (Wolfinger, Highton, and Mullin 2005). While we view clustered standard errors as a more straightforward, feasible approach, especially when working with large datasets or many cross-level interactions, our purpose in this Practical Researcher piece is to draw attention to the issue of clustering in state and local politics research.mixed-level data, voter turnout

    A calibration of the stellar mass fundamental plane at z ~ 0.5 using the micro-lensing induced flux ratio anomalies of macro-lensed quasars

    Full text link
    We measure the stellar mass surface densities of early type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single epoch X-ray snapshots of ten quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter IMF with a low mass cutoff of 0.1 solar mass and treat the zeropoint of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77 < F < 2.10Comment: Revised in response to referee's suggestions and re-submitted to ApJ; changes to the adopted effective radii propagate to a new value of the factor F (by which Salpeter stellar masses must be multiplied) of 1.2

    Efficacy of needle-placement technique in radiofrequency ablation for treatment of lumbar facet arthropathy.

    Get PDF
    BACKGROUND:Many studies have assessed the efficacy of radiofrequency ablation to denervate the facet joint as an interventional means of treating axial low-back pain. In these studies, varying procedural techniques were utilized to ablate the nerves that innervate the facet joints. To date, no comparison studies have been performed to suggest superiority of one technique or even compare the prevalence of side effects and complications. MATERIALS AND METHODS:A retrospective chart review was performed on patients who underwent a lumbar facet denervation procedure. Each patient's chart was analyzed for treatment technique (early versus advanced Australian), preprocedural visual numeric scale (VNS) score, postprocedural VNS score, duration of pain relief, and complications. RESULTS:Pre- and postprocedural VNS scores and change in VNS score between the two groups showed no significant differences. Patient-reported benefit and duration of relief was greater in the advanced Australian technique group (P=0.012 and 0.022, respectively). The advanced Australian technique group demonstrated a significantly greater median duration of relief (4 months versus 1.5 months, P=0.022). Male sex and no pain-medication use at baseline were associated with decreased postablation VNS scores, while increasing age and higher preablation VNS scores were associated with increased postablation VNS scores. Despite increasing age being associated with increased postablation VNS scores, age and the advanced Australian technique were found to confer greater patient self-reported treatment benefit. CONCLUSION:The advanced Australian technique provides a significant benefit over the early Australian technique for the treatment of lumbar facet pain, both in magnitude and duration of pain relief

    Coarse--graining, fixed points, and scaling in a large population of neurons

    Full text link
    We develop a phenomenological coarse--graining procedure for activity in a large network of neurons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse--grained variables seem to approach a fixed non--Gaussian form, and we see evidence of scaling in both static and dynamic quantities. These results suggest that the collective behavior of the network is described by a non--trivial fixed point

    The shapes of Milky Way satellites: looking for signatures of tidal stirring

    Full text link
    We study the shapes of Milky Way satellites in the context of the tidal stirring scenario for the formation of dwarf spheroidal galaxies. The standard procedures used to measure shapes involve smoothing and binning of data and thus may not be sufficient to detect structural properties like bars, which are usually subtle in low surface brightness systems. Taking advantage of the fact that in nearby dwarfs photometry of individual stars is available we introduce discrete measures of shape based on the two-dimensional inertia tensor and the Fourier bar mode. We apply these measures of shape first to a variety of simulated dwarf galaxies formed via tidal stirring of disks embedded in dark matter halos and orbiting the Milky Way. In addition to strong mass loss and randomization of stellar orbits, the disks undergo morphological transformation that typically involves the formation of a triaxial bar after the first pericenter passage. These tidally induced bars persist for a few Gyr before being shortened towards a more spherical shape if the tidal force is strong enough. We test this prediction by measuring in a similar way the shape of nearby dwarf galaxies, satellites of the Milky Way. We detect inner bars in Ursa Minor, Sagittarius, LMC and possibly Carina. In addition, six out of eleven studied dwarfs show elongated stellar distributions in the outer parts that may signify transition to tidal tails. We thus find the shapes of Milky Way satellites to be consistent with the predictions of the tidal stirring model.Comment: 14 pages, 11 figures, accepted for publication in Ap

    Patent Landscape of Influenza A Virus Prophylactic Vaccines and Related Technologies

    Get PDF
    Executive Summary: This report focuses on patent landscape analysis of technologies related to prophylactic vaccines targeting pandemic strains of influenza. These technologies include methods of formulating vaccine, methods of producing of viruses or viral subunits, the composition of complete vaccines, and other technologies that have the potential to aid in a global response to this pathogen. The purpose of this patent landscape study was to search, identify, and categorize patent documents that are relevant to the development of vaccines that can efficiently promote the development of protective immunity against pandemic influenza virus strains. The search strategy used keywords which the team felt would be general enough to capture (or “recall”) the majority of patent documents which were directed toward vaccines against influenza A virus. After extensive searching of patent literature databases, approximately 33,500 publications were identified and collapsed to about 3,800 INPADOC families. Relevant documents, almost half of the total, were then identified and sorted into the major categories of vaccine compositions (about 570 families), technologies which support the development of vaccines (about 750 families), and general platform technologies that could be useful but are not specific to the problems presented by pandemic influenza strains (about 560 families). The first two categories, vaccines and supporting technologies, were further divided into particular subcategories to allow an interested reader to rapidly select documents relevant to the particular technology in which he or she is focused. This sorting process increased the precision of the result set. The two major categories (vaccines and supporting technologies) were subjected to a range of analytics in order to extract as much information as possible from the dataset. First, patent landscape maps were generated to assess the accuracy of the sorting procedure and to reveal the relationships between the various technologies that are involved in creating an effective vaccine. Then, filings trends are analyzed for the datasets. The country of origin for the technologies was determined, and the range of distribution to other jurisdictions was assessed. Filings were also analyzed by year, by assignee, and by inventor. Finally, the various patent classification systems were mapped to find which particular classes tend to hold influenza vaccine-related technologies. Besides the keywords developed during the searches and the landscape map generation, the classifications represent an alternate way for further researchers to identify emerging influenza technologies. The analysis included creation of a map of keywords, as shown above, describing the relationship of the various technologies involved in the development of prophylactic influenza A vaccines. The map has regions corresponding to live attenuated virus vaccines, subunit vaccines composed of split viruses or isolated viral polypeptides, and plasmids used in DNA vaccines. Important technologies listed on the map include the use of reverse genetics to create reassortant viruses, the growth of viruses in modified cell lines as opposed to the traditional methods using eggs, the production of recombinant viral antigens in various host cells, and the use of genetically-modified plants to produce virus-like particles. Another major finding was that the number of patent documents related to influenza being published has been steadily increasing in the last decade, as shown in the figure below. Until the mid-1990s, there were only a few influenza patent documents being published each year. The number of publications increased noticeably when TRIPS took effect, resulting in publication of patent applications. However, since 2006 the number of vaccine publications has exploded. In each of 2011 and 2012, about 100 references disclosing influenza vaccine technologies were published. Thus, interest in developing new and more efficacious influenza vaccines has been growing in recent years. This interest is probably being driven by recent influenza outbreaks, such as the H5N1 (bird flu) epidemic that began in the late 1990s and the 2009 H1N1 (swine flu) pandemic. The origins of the vaccine-related inventions were also analyzed. The team determined the country in which the priority application was filed, which was taken as an indication of the country where the invention was made or where the inventors intended to practice the invention. By far, most of the relevant families originated with patent applications filed in the United States. Other prominent priority countries were the China and United Kingdom, followed by Japan, Russia, and South Korea. France was a significant priority country only for supporting technologies, not for vaccines. Top assignees for these families were mostly large pharmaceutical companies, with the majority of patent families coming from Novartis, followed by GlaxoSmithKline, Pfizer, U.S. Merck (Merck, Sharpe, & Dohme), Sanofi, and AstraZeneca. Governmental and nonprofit institutes in China, Japan, Russia, South Korea and the United States also are contributing heavily to influenza vaccine research. Lastly, the jurisdictions were inventors have sought protection for their vaccine technologies were determined, and the number of patent families filing in a given country is plotted on the world map shown on page seven. The United States, Canada, Australia, Japan, South Korea and China have the highest level of filings, followed by Germany, Brazil, India, Mexico and New Zealand. However, although there are a significant number of filings in Brazil, the remainder of Central and South America has only sparse filings. Of concern, with the exception of South Africa, few other African nations have a significant number of filings. In summary, the goal of this report is to provide a knowledge resource for making informed policy decisions and for creating strategic plans concerning the assembly of efficacious vaccines against a rapidly-spreading, highly virulent influenza strain. The team has defined the current state of the art of technologies involved in the manufacture of influenza vaccines, and the important assignees, inventors, and countries have been identified. This document should reveal both the strengths and weaknesses of the current level of preparedness for responding to an emerging pandemic influenza strain. The effects of H5N1 and H1N1 epidemics have been felt across the globe in the last decade, and future epidemics are very probable in the near future, so preparations are necessary to meet this global health threat
    • …
    corecore