74 research outputs found

    Soluble P-tau217 reflects amyloid and tau pathology and mediates the association of amyloid with tau

    Get PDF
    Alzheimer\u27s disease is characterized by β-amyloid plaques and tau tangles. Plasma levels of phospho-tau217 (P-tau217) accurately differentiate Alzheimer\u27s disease dementia from other dementias, but it is unclear to what degree this reflects β-amyloid plaque accumulation, tau tangle accumulation, or both. In a cohort with post-mortem neuropathological data (N = 88), both plaque and tangle density contributed independently to higher P-tau217, but P-tau217 was not elevated in patients with non-Alzheimer\u27s disease tauopathies (N = 9). Several findings were replicated in a cohort with PET imaging ( BioFINDER-2 , N = 426), where β-amyloid and tau PET were independently associated with P-tau217. P-tau217 concentrations correlated with β-amyloid PET (but not tau PET) in early disease stages and with both β-amyloid and (more strongly) tau PET in late disease stages. Finally, P-tau217 mediated the association between β-amyloid and tau in both cohorts, especially for tau outside of the medial temporal lobe. These findings support the hypothesis that plasma P-tau217 concentration is increased by both β-amyloid plaques and tau tangles and is congruent with the hypothesis that P-tau is involved in β-amyloid-dependent formation of neocortical tau tangles

    Plasma‐derived biomarkers of Alzheimer\u27s disease and neuropsychiatric symptoms: A community‐based study

    Get PDF
    INTRODUCTION: We examined associations between plasma-derived biomarkers of Alzheimer\u27s disease (AD) and neuropsychiatric symptoms (NPS) in community-dwelling older adults. METHODS: Cross-sectional study involving 1005 persons ≥50 years of age (mean 74 years, 564 male, 118 cognitively impaired), who completed plasma-derived biomarker (amyloid beta 42 [Aβ42]/Aβ40, phosphorylated tau 181 [p-tau181], p-tau217, total tau [t-tau], neurofilament light [NfL]), and NPS assessment. RESULTS: P-tau181 (odds ratio [OR] 2.06, 95% confidence interval [CI] 1.41–3.00, p < 0.001), p-tau217 (OR 1.70, 95% CI 1.10–2.61, p = 0.016), and t-tau (OR 1.44, 95% CI 1.08–1.92, p = 0.012) were associated with appetite change. We also found that p-tau181 and p-tau217 were associated with increased symptoms of agitation (OR 1.93, 95% CI 1.20–3.11, p = 0.007 and OR 2.04, 95% CI 1.21–3.42, p = 0.007, respectively), and disinhibition (OR 2.39, 95% CI 1.45–3.93, p = 0.001 and OR 2.30, 95% CI 1.33–3.98, p = 0.003, respectively). Aβ42/Aβ40 and NfL were not associated with NPS. CONCLUSION: Higher plasma-derived p-tau181 and p-tau217 levels are associated with increased symptoms of appetite change, agitation, and disinhibition. These findings may support the validity of plasma tau biomarkers for predicting behavioral symptoms that often accompany cognitive impairment. HIGHLIGHTS - We studied 1005 community-dwelling persons aged ≥ 50 years - Higher plasma tau levels are associated with increased neuropsychiatric symptoms - Aβ42/Aβ40 and NfL are not associated with neuropsychiatric symptoms - Clinicians should treat neuropsychiatric symptoms in persons with high plasma-derived ta

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer\u27s Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer’s disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology

    Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease

    Get PDF
    Blood biomarkers indicating elevated amyloid-β (Aβ) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient Aβ pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and Aβ42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest Aβ burden. Plasma p-tau231 and p-tau217 had the strongest association with Aβ positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in Aβ PET uptake in individuals without overt Aβ pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral Aβ changes, before overt Aβ plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology

    Blood biomarkers for Alzheimer’s disease in clinical practice and trials

    No full text
    Blood-based biomarkers hold great promise to revolutionize the diagnostic and prognostic work-up of Alzheimer’s disease (AD) in clinical practice. This is very timely, considering the recent development of anti-amyloid-β (Aβ) immunotherapies. Several assays for measuring phosphorylated tau (p-tau) in plasma exhibit high diagnostic accuracy in distinguishing AD from all other neurodegenerative diseases in patients with cognitive impairment. Prognostic models based on plasma p-tau levels can also predict future development of AD dementia in patients with mild cognitive complaints. The use of such high-performing plasma p-tau assays in the clinical practice of specialist memory clinics would reduce the need for more costly investigations involving cerebrospinal fluid samples or positron emission tomography. Indeed, blood-based biomarkers already facilitate identification of individuals with pre-symptomatic AD in the context of clinical trials. Longitudinal measurements of such biomarkers will also improve the detection of relevant disease-modifying effects of new drugs or lifestyle interventions

    Blood biomarkers for Alzheimer’s disease in clinical practice and trials

    No full text
    Blood-based biomarkers hold great promise to revolutionize the diagnostic and prognostic work-up of Alzheimer’s disease (AD) in clinical practice. This is very timely, considering the recent development of anti-amyloid-β (Aβ) immunotherapies. Several assays for measuring phosphorylated tau (p-tau) in plasma exhibit high diagnostic accuracy in distinguishing AD from all other neurodegenerative diseases in patients with cognitive impairment. Prognostic models based on plasma p-tau levels can also predict future development of AD dementia in patients with mild cognitive complaints. The use of such high-performing plasma p-tau assays in the clinical practice of specialist memory clinics would reduce the need for more costly investigations involving cerebrospinal fluid samples or positron emission tomography. Indeed, blood-based biomarkers already facilitate identification of individuals with pre-symptomatic AD in the context of clinical trials. Longitudinal measurements of such biomarkers will also improve the detection of relevant disease-modifying effects of new drugs or lifestyle interventions

    Blood-based biomarkers for Alzheimer's disease

    Get PDF
    Neurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever-increasing role in research, clinical trials, and in the clinical work-up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)-based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra-sensitive assays, the levels of pathological brain- and AD-related proteins can now be measured in blood, with recent work showing promising results. Plasma P-tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD-specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease-modifying therapies. This review provides an overview of the progress achieved thus far using AD blood-based biomarkers, highlighting key areas of application and unmet challenges

    Plasma Phospho-Tau Identifies Alzheimer's Co-Pathology in Patients with Lewy Body Disease

    No full text
    Background: Alzheimer's disease co-pathology is common in dementia with Lewy bodies and Parkinson's disease with dementia (Lewy body disease) and can reliably be detected with positron emission tomography (PET) or cerebrospinal fluid (CSF) biomarkers. Recently developed blood biomarkers are more accessible and less expensive alternatives. Objective: To investigate if plasma phospho-tau217 and phospho-tau181 can detect Alzheimer's pathology in Lewy body disease with dementia. Methods: In this cross-sectional study we investigated plasma phospho-tau217 and phospho-tau181 in 35 patients with Lewy body disease with dementia. Patients underwent tau-PET imaging (18F-RO948). Results: Plasma phospho-tau217 correlated with plasma phospho-tau181, CSF phospho-tau217 (rs = 0.68, P 0.56, P 0.78 and > 0.81, respectively). Conclusion: Plasma phospho-tau might be a useful marker for Alzheimer's co-pathology in Lewy body disease with dementia

    Pharmacological Characterisation of Nicotinic Acetylcholine Receptors Expressed in Human iPSC-Derived Neurons.

    No full text
    Neurons derived from human induced pluripotent stem cells (iPSCs) represent a potentially valuable tool for the characterisation of neuronal receptors and ion channels. Previous studies on iPSC-derived neuronal cells have reported the functional characterisation of a variety of receptors and ion channels, including glutamate receptors, γ-aminobutyric acid (GABA) receptors and several voltage-gated ion channels. In the present study we have examined the expression and functional properties of nicotinic acetylcholine receptors (nAChRs) in human iPSC-derived neurons. Gene expression analysis indicated the presence of transcripts encoding several nAChR subunits, with highest levels detected for α3-α7, β1, β2 and β4 subunits (encoded by CHRNA3-CHRNA7, CHRNB1, CHRNB2 and CHRNB4 genes). In addition, similarly high transcript levels were detected for the truncated dupα7 subunit transcript, encoded by the partially duplicated gene CHRFAM7A, which has been associated with psychiatric disorders such as schizophrenia. The functional properties of these nAChRs have been examined by calcium fluorescence and by patch-clamp recordings. The data obtained suggest that the majority of functional nAChRs expressed in these cells have pharmacological properties typical of α7 receptors. Large responses were induced by a selective α7 agonist (compound B), in the presence of the α7-selective positive allosteric modulator (PAM) PNU-120596, which were blocked by the α7-selective antagonist methyllycaconitine (MLA). In addition, a small proportion of the neurons express nAChRs with properties typical of heteromeric (non-α7 containing) nAChR subtypes. These cells therefore represent a great tool to advance our understanding of the properties of native human nAChRs, α7 in particular
    corecore