1,261 research outputs found
Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data
The Kepler planet sample can only be used to reconstruct the underlying
planet occurrence rate if the detection efficiency of the Kepler pipeline is
known, here we present the results of a second experiment aimed at
characterising this detection efficiency. We inject simulated transiting planet
signals into the pixel data of ~10,000 targets, spanning one year of
observations, and process the pixels as normal. We compare the set of
detections made by the pipeline with the expectation from the set of simulated
planets, and construct a sensitivity curve of signal recovery as a function of
the signal-to-noise of the simulated transit signal train. The sensitivity
curve does not meet the hypothetical maximum detection efficiency, however it
is not as pessimistic as some of the published estimates of the detection
efficiency. For the FGK stars in our sample, the sensitivity curve is well fit
by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find
that the pipeline algorithms recover the depths and periods of the injected
signals with very high fidelity, especially for periods longer than 10 days. We
perform a simplified occurrence rate calculation using the measured detection
efficiency compared to previous assumptions of the detection efficiency found
in the literature to demonstrate the systematic error introduced into the
resulting occurrence rates. The discrepancies in the calculated occurrence
rates may go some way towards reconciling some of the inconsistencies found in
the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap
False positive probabilties for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives
We present astrophysical false positive probability calculations for every
Kepler Object of Interest (KOI)---the first large-scale demonstration of a
fully automated transiting planet validation procedure. Out of 7056 KOIs, we
determine that 1935 have probabilities <1% to be astrophysical false positives,
and thus may be considered validated planets. 1284 of these have not yet been
validated or confirmed by other methods. In addition, we identify 428 KOIs
likely to be false positives that have not yet been identified as such, though
some of these may be a result of unidentified transit timing variations. A side
product of these calculations is full stellar property posterior samplings for
every host star, modeled as single, binary, and triple systems. These
calculations use 'vespa', a publicly available Python package able to be easily
applied to any transiting exoplanet candidate.Comment: 20 pages, 8 figures. Published in ApJ. Instructions to reproduce
results can be found at https://github.com/timothydmorton/koi-fp
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive
Influence of coral and algal exudates on microbially mediated reef metabolism.
Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs
Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations
With each new version of the Kepler pipeline and resulting planet candidate
catalogue, an updated measurement of the underlying planet population can only
be recovered with an corresponding measurement of the Kepler pipeline detection
efficiency. Here, we present measurements of the sensitivity of the pipeline
(version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog
(Coughlin et al. 2016). We measure this by injecting simulated transiting
planets into the pixel-level data of 159,013 targets across the entire Kepler
focal plane, and examining the recovery rate. Unlike previous versions of the
Kepler pipeline, we find a strong period dependence in the measured detection
efficiency, with longer (>40 day) periods having a significantly lower
detectability than shorter periods, introduced in part by an incorrectly
implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be
cast as a simple one-dimensional function of the signal strength of the
candidate planet signal as was possible for previous versions of the pipeline.
We report on the implications for occurrence rate calculations based on the
Q1-Q17 DR24 planet candidate catalog and offer important caveats and
recommendations for performing such calculations. As before, we make available
the entire table of injected planet parameters and whether they were recovered
by the pipeline, enabling readers to derive the pipeline detection sensitivity
in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at
the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201
Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data
We present the results of a search for potential transit signals in four
years of photometry data acquired by the Kepler Mission. The targets of the
search include 111,800 stars which were observed for the entire interval and
85,522 stars which were observed for a subset of the interval. We found that
9,743 targets contained at least one signal consistent with the signature of a
transiting or eclipsing object, where the criteria for detection are
periodicity of the detected transits, adequate signal-to-noise ratio, and
acceptance by a number of tests which reject false positive detections. When
targets that had produced a signal were searched repeatedly, an additional
6,542 signals were detected on 3,223 target stars, for a total of 16,285
potential detections. Comparison of the set of detected signals with a set of
known and vetted transit events in the Kepler field of view shows that the
recovery rate for these signals is 96.9%. The ensemble properties of the
detected signals are reviewed.Comment: Accepted by ApJ Supplemen
The Kepler Cluster Study: Stellar Rotation in NGC6811
We present rotation periods for 71 single dwarf members of the open cluster
NGC6811 determined using photometry from NASA's Kepler Mission. The results are
the first from The Kepler Cluster Study which combine Kepler's photometry with
ground-based spectroscopy for cluster membership and binarity. The rotation
periods delineate a tight sequence in the NGC6811 color-period diagram from ~1
day at mid-F to ~11 days at early-K spectral type. This result extends to ~1
Gyr similar prior results in the ~600 Myr Hyades and Praesepe clusters,
suggesting that rotation periods for cool dwarf stars delineate a well-defined
surface in the 3-dimensional space of color (mass), rotation, and age. It
implies that reliable ages can be derived for field dwarf stars with measured
colors and rotation periods, and it promises to enable further understanding of
various aspects of stellar rotation and activity for cool stars.Comment: 13 pages (aastex 12pt preprint style), 4 figures, 1 table, accepted
for publication in ApJ Letter
Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data
We present the results of a search for potential transit signals in the first
three quarters of photometry data acquired by the Kepler Mission. The targets
of the search include 151,722 stars which were observed over the full interval
and an additional 19,132 stars which were observed for only 1 or 2 quarters.
From this set of targets we find a total of 5,392 detections which meet the
Kepler detection criteria: those criteria are periodicity of the signal, an
acceptable signal-to-noise ratio, and a composition test which rejects spurious
detections which contain non-physical combinations of events. The detected
signals are dominated by events with relatively low signal-to-noise ratio and
by events with relatively short periods. The distribution of estimated transit
depths appears to peak in the range between 40 and 100 parts per million, with
a few detections down to fewer than 10 parts per million. The detected signals
are compared to a set of known transit events in the Kepler field of view which
were derived by a different method using a longer data interval; the comparison
shows that the current search correctly identified 88.1% of the known events. A
tabulation of the detected transit signals, examples which illustrate the
analysis and detection process, a discussion of future plans and open,
potentially fruitful, areas of further research are included
Gravitational waveforms for neutron star binaries from binary black hole simulations
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of
the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter ⋋
A super-Earth-sized planet orbiting in or near the habitable zone around Sun-like star
We present the discovery of a super-earth-sized planet in or near the
habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type
star. We detect two periodic sets of transit signals in the three-year flux
time series of Kepler-69, obtained with the Kepler spacecraft. Using the very
high precision Kepler photometry, and follow-up observations, our confidence
that these signals represent planetary transits is >99.1%. The inner planet,
Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every
13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a
radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an
Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19
K, which places the planet close to the habitable zone around the host star.
This is the smallest planet found by Kepler to be orbiting in or near habitable
zone of a Sun-like star and represents an important step on the path to finding
the first true Earth analog.Comment: Accepted for publication in the Astrophysical Journa
- …
