3,744 research outputs found

    Urine metabolomic analysis to detect metabolites associated with the development of contrast induced nephropathy.

    Get PDF
    ObjectiveContrast induced nephropathy (CIN) is a result of injury to the proximal tubules. The incidence of CIN is around 11% for imaging done in the acute care setting. We aim to analyze the metabolic patterns in the urine, before and after dosing with intravenous contrast for computed tomography (CT) imaging of the chest, to determine if metabolomic changes exist in patients who develop CIN.MethodsA convenience sample of high risk patients undergoing a chest CT with intravenous contrast were eligible for enrollment. Urine samples were collected prior to imaging and 4 to 6 hours post imaging. Samples underwent gas chromatography/mass spectrometry profiling. Peak metabolite values were measured and data was log transformed. Significance analysis of microarrays and partial least squares was used to determine the most significant metabolites prior to CT imaging and within subject. Analysis of variance was used to rank metabolites associated with temporal change and CIN. CIN was defined as an increase in serum creatinine level of ≥ 0.5 mg/dL or ≥ 25% above baseline within 48 hours after contrast administration.ResultsWe sampled paired urine samples from 63 subjects. The incidence of CIN was 6/63 (9.5%). Patients without CIN had elevated urinary citric acid and taurine concentrations in the pre-CT urine. Xylulose increased in the post CT sample in patients who developed CIN.ConclusionDifferences in metabolomics patterns in patients who do and do not develop CIN exist. Metabolites may be potential early identifiers of CIN and identify patients at high-risk for developing this condition prior to imaging

    Policy responses to invasive native species: issues of social and private benefits and costs

    Get PDF
    Farm and catchment managers in Australia face decisions about controlling invasive native species (or scrub) which may infest agricultural land. The treatment of this land to remove the infestation and re-establish native pastures is likely to be expensive for landholders. Yet there are potential social benefits from such remediation and so a policy question arises of what to do to about facilitating such change. New South Wales state government legislation addresses this issue through regulations, and the Catchment Management Authorities are responsible for administering public funds to achieve associated natural resource improvements. However, the extent of the private costs and social benefits associated with such changes are not known, which precludes benefit-cost analyses using the traditional welfare economics framework. This paper reports results of a social and private economic analysis of the impacts of a typical infestation remediation decision. We show that for the landholder the private costs exceed the benefits achieved from increased livestock productivity. However, there are social benefits expressed by the willingness to pay by members of the local catchment community for improvements in native vegetation and biodiversity. When these social benefits are included, the economic analysis shows a positive social net benefit. This raises questions of how to reconcile the public and private accounting, and whether any changes to policies, regulations or procedures for natural resource management in New South Wales are warranted.Invasive native scrub, environmental values, choice modelling, financial, economic, Namoi catchment,

    Resistance to Fracture of Two All-Ceramic Crown Materials Following Endodontic Access

    Get PDF
    Statement of problem There is currently no protocol for managing endodontic access openings for all-ceramic crowns. A direct restorative material is generally used to repair the access opening, rendering a repaired crown as the definitive restoration. This endodontic procedure, however, may weaken the restoration or initiate microcracks that may propagate, resulting in premature failure of the restoration. Purpose The purpose of this in vitro study was to evaluate how an endodontic access opening prepared through an all-ceramic crown altered the structural integrity of the ceramic, and the effect of a repair of this access on the load to failure of an all-ceramic crown. Material and methods Twenty-four alumina (Procera) and 24 zirconia (Procera) crowns were fabricated and cemented (Rely X Luting Plus Cement) onto duplicate epoxy resin dies. Twelve crowns of each were accessed to simulate root canal treatment therapy. Surface defects of all accessed specimens were evaluated with an environmental scanning electron microscope. The specimens were repaired with a porcelain repair system (standard adhesive resin/composite resin protocol) and were loaded to failure in a universal testing machine. Observations made visually and microscopically noted veneer delamination from the core, core fracture, shear within the veneer porcelain, or a combination thereof. A Kruskal-Wallis test was used to determine if a significant difference (α=.05) in load to failure existed between the 4 groups, and a Mann-Whitney test with a Bonferroni correction (P Results All specimens exhibited edge chipping around the access openings. Some displayed larger chips within the veneering porcelain, and 4 zirconia crowns showed radial crack formation. There was a significant difference in load to failure among all groups with the exception of the alumina intact and repaired specimens (P=.695). The alumina crowns generally showed fracture of the coping with the veneering porcelain still bonded to the core, whereas the zirconia copings tended not to fracture but experienced veneering porcelain delamination. Conclusion Endodontic access through all-ceramic crowns resulted in a significant loss of strength in the zirconia specimens but not in the alumina specimens

    Teaching Professional Communication in a Global Context: Using a Three-Phase Approach of Theory Exploration, Self-Assessment, and Virtual Simulation

    Get PDF
    In today\u27s globally diverse society, standard theoretical instruction is not able to expose our students to the realities of international communication, multicultural collaboration, and dispersed global work. Abstract text-based cases are limited in delivering a realistic view of the challenges of working virtually and globally within international teams. In addition to cases, we believe that hands-on experiential, collaborative exercises – combined with the metacognitive exercise of reflective practice – offer greater learning potential. While international collaboration and exercises may take extra time, effort, and cost, the benefits to students can be substantial

    Arginine methylation of yeast mRNA-binding protein Npl3 directly affects its function, nuclear export, and intranuclear protein interactions

    Get PDF
    Arginine methylation can affect both nucleocytoplasmic transport and protein-protein interactions of RNA-binding proteins. These effects are seen in cells that lack the yeast hnRNP methyltransferase (HMT1), raising the question of whether effects on specific proteins are direct or indirect. The presence of multiple arginines in individual methylated proteins also raises the question of whether overall methylation or methylation of a subset of arginines affects protein function. We have used the yeast mRNA-binding protein Npl3 to address these questions in vivo. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry was used to identify 17 methylated arginines in Npl3 purified from yeast: whereas 10 Arg-Gly-Gly (RGG) tripeptides were exclusively dimethylated, variable levels off methylation were found for 5 RGG and 2 RG motif arginines. We constructed a set of Npl3 proteins in which subsets of the RGG arginines were mutated to lysine. Expression of these mutant proteins as the sole form of Npl3 specifically affected growth of a strain that requires Hmtl. Although decreased growth generally correlated with increased numbers of Arg-to-Lys mutations, lysine substitutions in the N terminus of the RGG domain showed more severe effects. Npl3 with all 15 RGG arginines mutated to lysine exited the nucleus independent of Hmtl, indicating a direct effect of methylation on Npl3 transport. These mutations also resulted in a decreased, methylation-independent interaction of Npl3 with transcription elongation factor Tho2 and inhibited Npl3 self-association. These results support a model in which arginine methylation facilitates Npl3 export directly by weakening contacts with nuclear proteins. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc

    Considerations of Unmanned Aircraft Classification for Civil Airworthiness Standards

    Get PDF
    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. Classification is useful for ensuring that meaningful differences in design are accommodated by certification to different standards, and that aircraft with similar risk profiles are held to similar standards. This paper provides observations related to how the current regulations for classifying manned aircraft, based on dimensions of aircraft class and operational aircraft categories, could apply to UAS. This report finds that existing aircraft classes are well aligned with the types of UAS that currently exist; however, the operational categories are more difficult to align to proposed UAS use in the NAS. Specifically, the factors used to group manned aircraft into similar risk profiles do not necessarily capture all relevant UAS risks. UAS classification is investigated through gathering approaches to classification from a broad spectrum of organizations, and then identifying and evaluating the classification factors from these approaches. This initial investigation concludes that factors in addition to those currently used today to group manned aircraft for the purpose of assigning airworthiness standards will be needed to adequately capture risks associated with UAS and their operations

    Isolation, cohesion and contingent network effects: the case of school attachment and engagement

    Get PDF
    Isolation and cohesion are two key network features, often used to predict outcomes like mental health and deviance. More cohesive settings tend to have better outcomes, while isolates tend to fare worse than their more integrated peers. A common assumption of past work is that the effect of cohesion is universal, so that all actors get the same benefits of being in a socially cohesive environment. Here, we suggest that the effect of cohesion is universal only for specific types of outcomes. For other outcomes, experiencing the benefits of cohesion depends on an individual’s position in the network, such as whether or not an individual has any social ties. Network processes thus operate at both the individual and contextual level, and we employ hierarchical linear models to analyze these jointly to arrive at a full picture of how networks matter. We explore these ideas using the case of adolescents in schools (using Add Health data), focusing on the effect of isolation and cohesion on two outcomes, school attachment and academic engagement. We find that cohesion has a uniform effect in the case of engagement but not attachment. Only non-isolates experience stronger feelings of attachment as cohesion increases, while all students, both isolates and non-isolates, are more strongly engaged in high cohesion settings. Overall, the results show the importance of taking a systematic, multi-level approach, with important implications for studies of health and deviance

    Stress and Predation Impacts on North American Quail Translocations

    Get PDF
    Translocations have been used in attempts to bolster or restore native quail populations for \u3e150 years, often with little success. However, with some northeastern United States quail populations undetectable or extirpated, and others across the United States on the extreme decline, translocation as a tool for quail population restoration is becoming increasingly popular. Two factors contributing to translocation failure are physiological stress and predation. Chronic stress associated with translocations can result in weight loss, reduced immune system function, suppressed reproduction, and an altered fight-or-flight response. These stress-induced responses increase vulnerability to predation, the primary cause of quail mortality. Here, we review the relationship between quail translocations, stress, and predation, and recommend future research and best practices to mitigate the impacts of stress and predation on translocated quail. To improve future translocation outcomes, more research is needed on stress mitigation throughout the translocation process (capture, handling, transport, and release). While capture and handling are unavoidably stressful, there is greater potential to reduce stress levels during holding and transport. Recent validation of fecal corticosterone metabolites as a non-invasive method to quantify stress in quail offers a useful tool for testing stress reduction protocols. Preliminary experimental results regarding nutritional supplements and stress levels are inconclusive, but enrichment during temporary holding and access to travel rations may help improve survival in long-distance (\u3e800 km) translocations. We also recommend predator control at release sites, particularly for raccoons (Procyon lotor) and other mesomammals
    • …
    corecore