1,655 research outputs found

    A web server for interactive and zoomable Chaos Game Representation images

    Get PDF
    Chaos Game Representation (CGR) is a generalized scale-independent Markov transition table, which is useful for the visualization and comparative study of genomic signature, or for the study of characteristic sequence motifs. However, in order to fully utilize the scale-independent properties of CGR, it should be accessible through scale-independent user interface instead of static images. Here we describe a web server and Perl library for generating zoomable CGR images utilizing Google Maps API, which is also easily searchable for specific motifs. The web server is freely accessible at , and the Perl library as well as the source code is distributed with the G-language Genome Analysis Environment under GNU General Public License

    Decision Making for Inconsistent Expert Judgments Using Negative Probabilities

    Full text link
    In this paper we provide a simple random-variable example of inconsistent information, and analyze it using three different approaches: Bayesian, quantum-like, and negative probabilities. We then show that, at least for this particular example, both the Bayesian and the quantum-like approaches have less normative power than the negative probabilities one.Comment: 14 pages, revised version to appear in the Proceedings of the QI2013 (Quantum Interactions) conferenc

    Biological sequences as pictures – a generic two dimensional solution for iterated maps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Representing symbolic sequences graphically using iterated maps has enjoyed an enduring popularity since it was first proposed in Jeffrey 1990 as chaos game representation (CGR). The usefulness of this representation goes beyond the convenience of a scale independent representation. It provides a variable memory length representation of transition. This includes the representation of succession with non-integer order, which comes with the promise of generalizing Markovian formalisms. The original proposal targeted genomic sequences only but since then several generalizations have been proposed, many specifically designed to handle protein data.</p> <p>Results</p> <p>The challenge of a general solution is that of deriving a bijective transformation of symbolic sequences into bi-dimensional planes. More specifically, it requires the regular fractal nesting of polygons. A first attempt at a general solution was proposed by Fiser 1994 by using non-overlapping circles that contain the polygons. This was used as a starting point to identify a more efficient solution where the encapsulating circles can overlap without the same happening for the sequence maps which are circumscribed to fractal polygon domains.</p> <p>Conclusion</p> <p>We identified the optimal inscribed packing solution for iterated maps of any Biological sequence, indeed of any symbolic sequence. The new solution maintains the prized bijective mapping property and includes the Sierpinski triangle and the CGR square as particular solutions of the more encompassing formulation.</p

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Lost but Not Forgotten—The Economics of Improving Patient Retention in AIDS Treatment Programs

    Get PDF
    Gregory Bisson and Jeffrey Stringer discuss the implications of a new study showing how loss to follow-up affects the effectiveness of a public sector HIV program in Côte d'Ivoire

    Meeting Report: Knowledge and Gaps in Developing Microbial Criteria for Inland Recreational Waters

    Get PDF
    The U.S. Environmental Protection Agency (EPA) has committed to issuing in 2012 new or revised criteria designed to protect the health of those who use surface waters for recreation. For this purpose, the U.S. EPA has been conducting epidemiologic studies to establish relationships between microbial measures of water quality and adverse health outcomes among swimmers. New methods for testing water quality that would provide same-day results will likely be elements of the new criteria. Although the epidemiologic studies upon which the criteria will be based were conducted at Great Lakes and marine beaches, the new water quality criteria may be extended to inland waters (IWs). Similarities and important differences between coastal waters (CWs) and IWs that should be considered when developing criteria for IWs were the focus of an expert workshop. Here, we summarize the state of knowledge and research needed to base IWs microbial criteria on sound science. Two key differences between CWs and IWs are the sources of indicator bacteria, which may modify the relationship between indicator microbes and health risk, and the relationship between indicators and pathogens, which also may vary within IWs. Monitoring using rapid molecular methods will require the standardization and simplification of analytical methods, as well as greater clarity about their interpretation. Research needs for the short term and longer term are described

    WHODAS 2.0 in prodromal Huntington disease : measures of functioning in neuropsychiatric disease

    Get PDF
    We thank the PREDICT-HD sites, the study participants, the National Research Roster for Huntington Disease Patients and Families, the Huntington’s Disease Society of America and the Huntington Study Group. This research was supported by the National Center for Advancing Translational Sciences, and the National Institutes of Health (NIH), through Grant 2 UL1 TR000442-06. This research is supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke (NS040068), CHDI Foundation, Inc (A3917), Cognitive and Functional Brain Changes in Preclinical Huntington’s Disease (HD) (5R01NS054893), 4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington’s (1U01NS082086), Functional Connectivity in Pre-manifest Huntington’s Disease (1U01NS082083), and Basal Ganglia Shape Analysis and Circuitry in Huntington’s Disease (1U01NS082085).Peer reviewedPublisher PD

    Chaos game representation for comparison of whole genomes

    Get PDF
    BACKGROUND: Chaos game representation of genome sequences has been used for visual representation of genome sequence patterns as well as alignment-free comparisons of sequences based on oligonucleotide frequencies. However the potential of this representation for making alignment-based comparisons of whole genome sequences has not been exploited. RESULTS: We present here a fast algorithm for identifying all local alignments between two long DNA sequences using the sequence information contained in CGR points. The local alignments can be depicted graphically in a dot-matrix plot or in text form, and the significant similarities and differences between the two sequences can be identified. We demonstrate the method through comparison of whole genomes of several microbial species. Given two closely related genomes we generate information on mismatches, insertions, deletions and shuffles that differentiate the two genomes. CONCLUSION: Addition of the possibility of large scale sequence alignment to the repertoire of alignment-free sequence analysis applications of chaos game representation, positions CGR as a powerful sequence analysis tool

    The diagnosis and management of pre-invasive breast disease: editor's reply

    Get PDF
    Introduction: The letter from Badve [1] relating to the series on pre-invasive breast disease, published in the September and November issues of Breast Cancer Research [2-10], is timely and very welcome. It rightly points out that one should be careful in changing classification systems based on limited knowledge and that perhaps discarding the term atypical ductal hyperplasia at the present time may be premature. I completely agree with him; however, there are a few issues I feel obliged to clarify
    corecore