10 research outputs found

    Turbulent kinetic energy in the energy balance of a solar flare

    Get PDF
    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to X-rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component -- the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only \sim (0.5-1)\% of the energy released, its relatively rapid (\sim1-10~s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites

    Frequency rising sub-THz emission from solar flare ribbons

    Get PDF
    Observations of solar flares at sub-THz frequencies (millimetre and sub-millimetre wavelengths) over the last two decades often show a spectral component rising with frequency. Unlike a typical gyrosynchrotron spectrum decreasing with frequency or a weak thermal component from hot coronal plasma, the observations can demonstrate a high flux level (up to ∼104 solar flux units at 0.4 THz) and fast variability on sub-second timescales. Although, many models have been put forward to explain the puzzling observations, none of them has clear observational support. Here we propose a scenario to explain the intriguing sub-THz observations. We show that the model, based on free-free emission from the plasma of flare ribbons at temperatures 104 − 106 K, is consistent with all existing observations of frequency-rising sub-THz flare emission. The model provides a temperature diagnostic of the flaring chromosphere and suggests fast heating and cooling of the dense transition region plasma

    Plan de actividades recreativas utilizando como medio el juego de balonmano adaptado, para los adolescentes entre 12 y 16 años del sexo masculino, de la circunscripción 117 El Batey de Sánchez, del Consejo Popular Las Ovas del municipio Pinar del Río

    Get PDF
    Este trabajo fue realizado en la circunscripción 117 “El Batey de Sánchez”, del Consejo Popular Las Ovas municipio Pinar del Río, el mismo surge debido a la carencia de actividades-físico recreativas destinadas a los adolescentes con edades comprendidas entre 12 y 16 años. Para su realización nos trazamos como problema científico el siguiente: ¿Cómo mejorar la recreación física en los adolescentes entre 12 y 16 años de edad del sexo masculino de la circunscripción 117 “El Batey de Sánchez”, del consejo popular las Ovas? el mismo surge por la problemática que presentan los adolescentes de esta circunscripción, dentro de los cuales podemos mencionar las peleas de gallos, perros, tomeguines, lo cual se pudo comprobar con la aplicación de los diferentes métodos utilizados en nuestro trabajo. Debido a la importancia del mismo nos propusimos el siguiente Objetivo: Aplicar un plan de actividades recreativas utilizando como medio el juego de balonmano adaptado para los adolescentes entre 12 y 16 años de edad del sexo masculino de la circunscripción 117 “El Batey de Sánchez”, del consejo popular Las Ovas municipio Pinar del Rió. Al final del mismo se presentan conclusiones y recomendaciones, las cuales dan respuestas a las interrogantes planteadas al comienz

    Global trends of hand and wrist trauma: A systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study

    Get PDF
    Background: As global rates of mortality decrease, rates of non-fatal injury have increased, particularly in low Socio-demographic Index (SDI) nations. We hypothesised this global pattern of non-fatal injury would be demonstrated in regard to bony hand and wrist trauma over the 27-year study period. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 was used to estimate prevalence, age-standardised incidence and years lived with disability for hand trauma in 195 countries from 1990 to 2017. Individual injuries included hand and wrist fractures, thumb amputations and non-thumb digit amputations. Results: The global incidence of hand trauma has only modestly decreased since 1990. In 2017, t

    The solar particle acceleration radiation and kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model

    No full text
    We report on high-resolution optical and hard X-ray observations of solar flare ribbons seen during the GOES X6.5 class white-light flare of 2006 December 6. The data consist of imaging observations at 430 nm (the Fraunhofer G band) taken by the Hinode Solar Optical Telescope with the hard X-rays observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager. The two sets of data show closely similar ribbon structures, strongly suggesting that the flare emissions in white light and in hard X-rays have physically linked emission mechanisms. While the source structure along the ribbons is resolved at both wavelengths (length ~ 30''), only the G-band observations resolve the width of the ribbon, with values between ~05 and ~18. The unresolved hard X-ray observations reveal an even narrower ribbon in hard X-rays (the main footpoint has a width perpendicular to the ribbon of <11 compared to the G-band width of ~18) suggesting that the hard X-ray emission comes from the sharp leading edge of the G-band ribbon. Applying the thick-target beam model, the derived energy deposition rate is >5 × 1012 erg s–1 cm–2 provided by an electron flux of 1 × 1020 electrons s–1 cm–2 above 18 keV. This requires that the beam density of electrons above 18 keV be at least 1 × 1010 cm–3. Even if field lines converge toward the chromospheric footpoints, the required beam in the corona has too high a density to be described as a dilute tail population on top of a Maxwellian core. We discuss this issue and others associated with this extreme event, which poses serious questions to the standard thick target beam interpretation of solar flares

    A Hitch-hiker’s Guide to Stochastic Differential Equations

    No full text

    Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review)

    No full text

    A New View of the Solar Interface Region from the Interface Region Imaging Spectrograph (IRIS)

    No full text
    corecore