116 research outputs found

    Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running during Avian Ontogeny

    Get PDF
    Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring “flight adaptations,” recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs

    Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization

    Get PDF
    Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip–knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait

    Measurement of the Inclusive Semi-electronic D0D^0 Branching Fraction

    Get PDF
    Using the angular correlation between the π+\pi^+ emitted in a D+D0π+D^{*+} \rightarrow D^0 \pi^+ decay and the e+e^+ emitted in the subsequent D0Xe+νD^0 \rightarrow Xe^+\nu decay, we have measured the branching fraction for the inclusive semi-electronic decay of the D0D^0 meson to be: {\cal B}(D^0 \rightarrow X e^+ \nu) = [6.64 \pm 0.18 (stat.) \pm 0.29 (syst.)] \%. The result is based on 1.7 fb1^{-1} of e+ee^+e^- collisions recorded by the CLEO II detector located at the Cornell Electron Storage Ring (CESR). Combining the analysis presented in this paper with previous CLEO results we find, \frac{{\cal B} (D^0 \rightarrow X e^+ \nu)} {{\cal B} (D^0 \rightarrow K^- \pi^+)} = 1.684 \pm 0.056 (stat.) \pm 0.093(syst.) and \frac{{\cal B}(D\rightarrow K^-e^+\nu)} {{\cal B}(D\rightarrow Xe^+\nu)} = 0.581 \pm 0.023 (stat.) \pm 0.028(syst.). The difference between the inclusive rate and the sum of the measured exclusive branching fractions (measured at CLEO and other experiments) is (3.3±7.2)%(3.3 \pm 7.2) \% of the inclusive rate.Comment: Latex file, 33pages, 4 figures Submitted to PR

    X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho's supernova remnant

    Full text link
    Supernova remnants are commonly considered to produce most of the Galactic cosmic rays via diffusive shock acceleration. However, many questions about the physical conditions at shock fronts, such as the magnetic-field morphology close to the particle acceleration sites, remain open. Here we report the detection of a localized polarization signal from some synchrotron X-ray emitting regions of Tycho's supernova remnant made by the Imaging X-ray Polarimetry Explorer. The derived polarization degree of the X-ray synchrotron emission is 9+/-2% averaged over the whole remnant, and 12+/-2% at the rim, higher than the 7-8% polarization value observed in the radio band. In the west region the polarization degree is 23+/-4%. The X-ray polarization degree in Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic-field or a larger maximum turbulence scale. The measured tangential polarization direction corresponds to a radial magnetic field, and is consistent with that observed in the radio band. These results are compatible with the expectation of turbulence produced by an anisotropic cascade of a radial magnetic-field near the shock, where we derive a magnetic-field amplification factor of 3.4+/-0.3. The fact that this value is significantly smaller than those expected from acceleration models is indicative of highly anisotropic magnetic-field turbulence, or that the emitting electrons either favor regions of lower turbulence, or accumulate close to where the magnetic-field orientation is preferentially radially oriented due to hydrodynamical instabilities.Comment: 31 pages, 7 figures, 3 tables. Accepted for publication in ApJ. Revised versio

    Observations of 4U 1626-67 with the Imaging X-ray Polarimetry Explorer

    Get PDF
    We present measurements of the polarization of X-rays in the 2-8 keV band from the pulsar in the ultracompact low mass X-ray binary 4U1626-67 using data from the Imaging X-ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were clearly detected throughout the IXPE observations as well as in the NICER soft X-ray observations, which we use as the basis for our timing analysis and to constrain the spectral shape over 0.4-10 keV energy band. Chandra HETGS high-resolution X-ray spectra were also obtained near the times of the IXPE observations for firm spectral modeling. We find an upper limit on the pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there was no significant detection of polarized flux in pulse phase intervals when subdividing the bandpass by energy. However, spectropolarimetric modeling over the full bandpass in pulse phase intervals provide a marginal detection of polarization of the power-law spectral component at the 4.8 +/- 2.3% level (90% confidence). We discuss the implications concerning the accretion geometry onto the pulsar, favoring two-component models of the pulsed emission.Comment: 19 pages, 7 figures, 7 tables; accepted for publication in the Astrophysical Journa

    Magnetic structures and turbulence in SN 1006 revealed with imaging X-ray polarimetry

    Full text link
    Young supernova remnants (SNRs) strongly modify surrounding magnetic fields, which in turn play an essential role in accelerating cosmic rays (CRs). X-ray polarization measurements probe magnetic field morphology and turbulence at the immediate acceleration site. We report the X-ray polarization distribution in the northeastern shell of SN1006 from a 1 Ms observation with the Imaging X-ray Polarimetry Explorer (IXPE). We found an average polarization degree of 22.4±3.5%22.4\pm 3.5\% and an average polarization angle of 45.4±4.5-45.4\pm 4.5^\circ (measured on the plane of the sky from north to east). The X-ray polarization angle distribution reveals that the magnetic fields immediately behind the shock in the northeastern shell of SN 1006 are nearly parallel to the shock normal or radially distributed, similar to that in the radio observations, and consistent with the quasi-parallel CR acceleration scenario. The X-ray emission is marginally more polarized than that in the radio band. The X-ray polarization degree of SN 1006 is much larger than that in Cas A and Tycho, together with the relatively tenuous and smooth ambient medium of the remnant, favoring that CR-induced instabilities set the turbulence in SN 1006 and CR acceleration is environment-dependent.Comment: 15 pages, 4 Figures, 2 Tables; accepted for publication in The Astrophysical Journa

    X-ray pulsar GRO J1008-57 as an orthogonal rotator

    Full text link
    X-ray polarimetry is a unique way to probe geometrical configuration of highly-magnetized accreting neutron stars (X-ray pulsars). GRO J1008-57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. The polarization properties were found to be independent of the source luminosity, with the polarization degree varying between non-detection to about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination (130 deg, which is in good agreement with the orbital inclination), the position angle (75 deg) of the pulsar spin axis, and the magnetic obliquity (74 deg). This makes GRO J1008-57 the first confidently identified X-ray pulsar as a nearly orthogonal rotator. The results are discussed in the context of the neutron star atmosphere models and theories of pulsars' axis alignment.Comment: 11 pages, 7 figures, submitted to A&A. arXiv admin note: text overlap with arXiv:2209.0244

    The Polarized Cosmic Hand: IXPE Observations of PSR B1509-58/MSH 15-52

    Full text link
    We describe IXPE polarization observations of the Pulsar Wind Nebula (PWN) MSH15-52, the `Cosmic Hand'. We find X-ray polarization across the PWN, with B field vectors generally aligned with filamentary X-ray structures. High significance polarization is seen in arcs surrounding the pulsar and toward the end of the `jet', with polarization degree PD>70%, thus approaching the maximum allowed synchrotron value. In contrast, the base of the jet has lower polarization, indicating a complex magnetic field at significant angle to the jet axis. We also detect significant polarization from PSR B1509-58 itself. Although only the central pulse-phase bin of the pulse has high individual significance, flanking bins provide lower significance detections and, in conjunction with the X-ray image and radio polarization, can be used to constrain rotating vector model solutions for the pulsar geometry.Comment: To appear in the Astrophysical Journa

    X-ray Polarization of the Eastern Lobe of SS 433

    Full text link
    How astrophysical systems translate the kinetic energy of bulk motion into the acceleration of particles to very high energies is a pressing question. SS 433 is a microquasar that emits TeV gamma-rays indicating the presence of high-energy particles. A region of hard X-ray emission in the eastern lobe of SS 433 was recently identified as an acceleration site. We observed this region with the Imaging X-ray Polarimetry Explorer and measured a polarization degree in the range 38% to 77%. The high polarization degree indicates the magnetic field has a well ordered component if the X-rays are due to synchrotron emission. The polarization angle is in the range -12 to +10 degrees (east of north) which indicates that the magnetic field is parallel to the jet. Magnetic fields parallel to the bulk flow have also been found in supernova remnants and the jets of powerful radio galaxies. This may be caused by interaction of the flow with the ambient medium.Comment: 8 pages, accepted in the Astrophysical Journal Letter

    X-Ray Polarimetry of the Dipping Accreting Neutron Star 4U 1624-49

    Full text link
    We present the first X-ray polarimetric study of the dipping accreting neutron star 4U 1624-49 with the Imaging X-ray Polarimetry Explorer (IXPE). We report a detection of polarization in the non-dip time intervals with a confidence level of 99.99%. We find an average polarization degree (PD) of 3.1±0.73.1\pm0.7% and a polarization angle of 81±681\pm6 degrees east of north in the 2-8 keV band. We report an upper limit on the PD of 22% during the X-ray dips with 95% confidence. The PD increases with energy, reaching from 3.0±0.93.0\pm0.9% in the 4-6 keV band to 6±26\pm2% in the 6-8 keV band. This indicates the polarization likely arises from Comptonization. The high PD observed is unlikely to be produced by Comptonization in the boundary layer or spreading layer alone. It can be produced by the addition of an extended geometrically thin slab corona covering part of the accretion disk, as assumed in previous models of dippers, and/or a reflection component from the accretion disk
    corecore