5,011 research outputs found

    General Green's function formalism for transport calculations with spd-Hamiltonians and giant magnetoresistance in Co and Ni based magnetic multilayers

    Full text link
    A novel, general Green's function technique for elastic spin-dependent transport calculations is presented, which (i) scales linearly with system size and (ii) allows straightforward application to general tight-binding Hamiltonians (spd in the present work). The method is applied to studies of conductance and giant magnetoresistance (GMR) of magnetic multilayers in CPP (current perpendicular to planes) geometry in the limit of large coherence length. The magnetic materials considered are Co and Ni, with various non-magnetic materials from the 3d, 4d, and 5d transition metal series. Realistic tight-binding models for them have been constructed with the use of density functional calculations. We have identified three qualitatively different cases which depend on whether or not the bands (densities of states) of a non-magnetic metal (i) form an almost perfect match with one of spin sub-bands of the magnetic metal (as in Cu/Co spin valves); (ii) have almost pure sp character at the Fermi level (e.g. Ag); (iii) have almost pure d character at the Fermi energy (e.g. Pd, Pt). The key parameters which give rise to a large GMR ratio turn out to be (i) a strong spin polarization of the magnetic metal, (ii) a large energy offset between the conduction band of the non-magnetic metal and one of spin sub-bands of the magnetic metal, and (iii) strong interband scattering in one of spin sub-bands of a magnetic metal. The present results show that GMR oscillates with variation of the thickness of either non-magnetic or magnetic layers, as observed experimentally.Comment: 22 pages, 9 figure

    Entanglement between static and flying qubits in a semiconducting carbon nanotube

    Full text link
    Entanglement can be generated by two electrons in a spin-zero state on a semiconducting single-walled carbon nanotube. The two electrons, one weakly bound in a shallow well in the conduction band, and the other injected into the conduction band, are coupled by the Coulomb interaction. Both transmission and entanglement are dependent on the well characteristics, which can be controlled by a local gate, and on the kinetic energy of the injected electron. Regimes with different degrees of electron correlation exhibit full or partial entanglement. In the latter case, the maximum entanglement can be estimated as a function of width and separation of a pair of singlet-triplet resonances.Comment: 17 pages and 12 figures, accepted to J. Phys. Cond. Ma

    Agent-based models of the cultural evolution of occupational gender roles

    Get PDF
    The causes of sex differences in human behaviour are contested, with ‘evolutionary’ and ‘social’ explanations often being pitted against each other in the literature. Recent work showing positive correlations between indices of gender equality and the size of sex differences in behaviour has been argued to show support for ‘evolutionary’ over ‘social’ approaches. This argument, however, neglects the potential for social learning to generate arbitrary gender segregation. In the current paper we simulate, using agent-based models, a population where agents exist as one of two ‘types’ and can use social information about which types of agents are performing which ‘roles’ within their environment. We find that agents self-segregate into different roles even where real differences in performance do not exist, if there is a common belief (modelled as priors) that group differences may exist in ‘innate’ competence. Facilitating role changes such that agents should move without cost to the predicted highest-rewards for their skills (i.e. fluidity of the labour market) reduced segregation, while forcing extended exploration of different roles eradicated gender segregation. These models are interpreted in terms of bio-cultural evolution, and the impact of social learning on the expression of gender roles

    X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset

    Get PDF
    The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices

    A Hartree-Fock Study of Persistent Currents in Disordered Rings

    Full text link
    For a system of spinless fermions in a disordered mesoscopic ring, interactions can give rise to an enhancement of the persistent current by orders of magnitude. The increase in the current is associated with a charge reorganization of the ground state. The interaction strength for which this reorganization takes place is sample-dependent and the log-averages over the ensemble are not representative. In this paper we demonstrate that the Hartree-Fock method closely reproduces results obtained by exact diagonalization. For spinless fermions subject to a short-range Coulomb repulsion U we show that due to charge reorganization the derivative of the persistent current is a discontinuous function of U. Having established that the Hartree-Fock method works well in one dimension, we present corresponding results for persistent currents in two coupled chains.Comment: 4 pages, 6 figures, Submitted to Phys. Rev.

    Evidence of spontaneous spin polarized transport in magnetic nanowires

    Full text link
    The exploitation of the spin in charge-based systems is opening revolutionary opportunities for device architecture. Surprisingly, room temperature electrical transport through magnetic nanowires is still an unresolved issue. Here, we show that ferromagnetic (Co) suspended atom chains spontaneously display an electron transport of half a conductance quantum, as expected for a fully polarized conduction channel. Similar behavior has been observed for Pd (a quasi-magnetic 4d metal) and Pt (a non-magnetic 5d metal). These results suggest that the nanowire low dimensionality reinforces or induces magnetic behavior, lifting off spin degeneracy even at room temperature and zero external magnetic field.Comment: 4 pages, 3 eps fig

    Bandgap and effective mass of epitaxial cadmium oxide

    Get PDF
    The bandgap and band-edge effective mass of single crystal cadmium oxide, epitaxially grown by metal-organic vapor-phase epitaxy, are determined from infrared reflectivity, ultraviolet/visible absorption, and Hall effect measurements. Analysis and simulation of the optical data, including effects of band nonparabolicity, Moss-Burstein band filling and bandgap renormalization, reveal room temperature bandgap and band-edge effective mass values of 2.16±0.02 eV and 0.21±0.01m0 respectively

    Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering

    Get PDF
    We present the first measurements of the e⃗p→epγ cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q2 dependence (from 1.5 to 2.3  GeV2) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q2. The helicity-independent cross section is also measured at Q2=2.3  GeV2. We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation
    corecore