18 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    The mouse tectorins: modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system.

    No full text
    The cDNA and derived amino acid sequences for the two major non- collagenous proteins of the mouse tectorial membrane, a- and -tectorin, are presented. The cDNA for a-tectorin predicts a protein of 239,034 Da with 33 potential N-glycosylation sites, and that of -tectorin a smaller protein of 36,074 Da with 4 consensus N-glycosylation sites. Southern and Northern blot analysis indicate a- and -tectorin are single copy genes only expressed in the inner ear, and in situ hybridization shows they are expressed by cells both in and surrounding the mechanosensory epithelia. Both sequences terminate with a hydrophobic COOH terminus preceded by a potential endoproteinase cleavage site suggesting the tectorins are synthesized as glycosylphosphatidylinositol-linked, membrane bound precursors, targeted to the apical surface of the inner ear epithelia by the lipid and proteolytically released into the extracellular compartment. The mouse - tectorin sequence contains a single zona pellucida domain, whereas a- tectorin is composed of three distinct modules: an NH2-terminal region similar to part of the entactin G1 domain, a large central segment with three full and two partial von Willebrand factor type D repeats, and a carboxyl- terminal region which, like -tectorin, contains a single zona pellucida domain. The central, high molecular mass region of a-tectorin containing the yon Willebrand factor type D repeats has homology with zonadhesin, a sperm membrane protein that binds to the zona pellucida. These results indicate the two major non-collagenous proteins of the tectorial membrane are similar to components of the sperm-egg adhesion system, and, as such may interact in the same manner
    corecore