375 research outputs found

    Modeling the Habitat Range of Phototrophs in Yellowstone National Park: Toward the Development of a Comprehensive Fitness Landscape

    Get PDF
    The extent to which geochemical variation shapes the distribution of phototrophic metabolisms was modeled based on 439 observations in geothermal springs in Yellowstone National Park (YNP), Wyoming. Generalized additive models (GAMs) were developed to predict the distribution of phototrophic metabolism as a function of spring temperature, pH, and total sulfide. GAMs comprised of temperature explained 38.8% of the variation in the distribution of phototrophic metabolism, whereas GAMs comprised of sulfide and pH explained 19.6 and 11.2% of the variation, respectively. These results suggest that of the measured variables, temperature is the primary constraint on the distribution of phototrophs in YNP. GAMs comprised of multiple variables explained a larger percentage of the variation in the distribution of phototrophic metabolism, indicating additive interactions among variables. A GAM that combined temperature and sulfide explained the greatest variation in the dataset (53.4%) while minimizing the introduction of degrees of freedom. In an effort to verify the extent to which phototroph distribution reflects constraints on activity, we examined the influence of sulfide and temperature on dissolved inorganic carbon (DIC) uptake rates under both light and dark conditions. Light-driven DIC uptake decreased systematically with increasing concentrations of sulfide in acidic, algal-dominated systems, but was unaffected in alkaline, cyanobacterial-dominated systems. In both alkaline and acidic systems, light-driven DIC uptake was suppressed in cultures incubated at temperatures 10°C greater than their in situ temperature. Collectively, these quantitative results indicate that apart from light availability, the habitat range of phototrophs in YNP springs is defined largely by constraints imposed firstly by temperature and secondly by sulfide on the activity of these populations that inhabit the edges of the habitat range. These findings are consistent with the predictions from GAMs and provide a quantitative framework from which to translate distributional patterns into fitness landscapes for use in interpreting the environmental constraints that have shaped the evolution of this process through Earth history

    The NASA Solar Cruiser Mission - Solar Sail Propulsion Enabling Heliophysics Missions

    Get PDF
    Solar Cruiser is a Small Satellite Technology Demonstration Mission (TDM) to mature solar sail propulsion technology to enable near-term, high-priority breakthrough science missions as defined in the Solar and Space Physics Decadal Survey. Solar sails have the potential to provide high ΔV for many types of missions. Solar sails are large, mirror-like structures made of a lightweight material that reflects sunlight to propel the spacecraft. The continuous solar photon pressure provides thrust with no need for the heavy, expendable propellants used by conventional chemical and electric propulsion systems. Solar Cruiser will demonstrate a “sailcraft” platform with pointing control and attitude stability comparable to traditional platforms, upon which a new class of Heliophysics missions may fly. It will show sailcraft operation (acceleration, navigation, station keeping, heliocentric plane change) scalability of sail technologies such as the boom, membrane, and deployer to enable more demanding missions, such as high inclination solar imaging. Solar Cruiser will launch as a secondary payload with NASA’s Interstellar Mapping and Acceleration Probe (IMAP) in early 2025. The sailcraft will separate from the launch vehicle on a near-L1 trajectory (Sun-Earth Lagrangian Point 1; sunward of L1 along the Sun-Earth Line) and complete its primary mission in 11 months or less

    Not a Second Time? John Lennon’s Aeolian Cadence Reconsidered

    Get PDF
    In 1963 William Mann coined the term “aeolian cadence” to describe a harmonic progression in the song “Not a Second Time” by the Beatles. This term has caused confusion ever since. In this article, I discuss why Mann might have used this confusing phrase and how it relates to this song by John Lennon. I will argue that, in the debate that ensued from Mann’s observations, his commentators were primarily preoccupied with terminology and definitions but forgot to listen to Lennon. More specifically, I argue that, if the interplay between the music and lyrics is considered, the famous cadence in “Not a Second Time” can best be interpreted as “deceptive.

    Rabbits, stoats and the predator problem: Why a strong animal rights position need not call for human intervention to protect prey from predators

    Get PDF
    Animal rights positions face the ‘predator problem’: the suggestion that if the rights of nonhuman animals are to be protected, then we are obliged to interfere in natural ecosystems to protect prey from predators. Generally, rather than embracing this conclusion, animal ethicists have rejected it, basing this objection on a number of different arguments. This paper considers but challenges three such arguments, before defending a fourth possibility. Rejected are Peter Singer’s suggestion that interference will lead to more harm than good, Sue Donaldson and Will Kymlicka’s suggestion that respect for nonhuman sovereignty necessitates non-interference in normal circumstances, and Alasdair Cochrane’s solution based on the claim that predators cannot survive without killing prey. The possibility defended builds upon Tom Regan’s suggestion that predators, as moral patients but not moral agents, cannot violate the rights of their prey, and so the rights of the prey, while they do exist, do not call for intervention. This idea is developed by a consideration of how moral agents can be more or less responsible for a given event, and defended against criticisms offered by thinkers including Alasdair Cochrane and Dale Jamieson

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PAS

    Transformative Sea-level Rise Research and Planning: Establishing a University, Tribal, and Community Partnership for a Resilient California North Coast

    Get PDF
    Sea-level rise (SLR) is and will continue to be a pressing issue in the rural, North Coast region of California, especially since nearby Wigi (or Humboldt Bay) is experiencing one of the fastest rates of relative SLR on the U.S. West Coast. In this paper, we argue that SLR presents a transformative opportunity to rekindle environmental relationships and reshape the future of the California North Coast and beyond. As the preeminent higher education institution of the region, Cal Poly Humboldt has the responsibility to be a leader in education, research, and planning for climate resilience. We describe efforts of the Cal Poly Humboldt Sea Level Rise Institute to establish a university-Tribal-community partnership that braids together different approaches and ways of knowing to develop research and planning that supports a resilient California North Coast. Since Wigi is projected to experience the effects of SLR sooner than the rest of the state, the North Coast region is poised to act as an incubator for new ideas and solutions, including Indigenous knowledge systems, and to play a role in influencing equitable, resilient, and transformative SLR adaptation processes in other parts of the state and the world. This will require developing programming and expertise in specific disciplinary areas, but, more importantly, will require the development of opportunities and spaces for various disciplines, ways of knowing, and sectors (e.g. Tribal nations, academia, government, NGOs, private companies, and community groups) to converge and bring the best of what they have to address climate-induced challenges and opportunities

    Spectroscopic Time-series Performance of JWST/NIRSpec from Commissioning Observations

    Full text link
    We report on JWST commissioning observations of the transiting exoplanet HAT-P-14 b, obtained using the Bright Object Time Series (BOTS) mode of the NIRSpec instrument with the G395H/F290LP grating/filter combination (35μ3-5\mum). While the data were used primarily to verify that the NIRSpec BOTS mode is working as expected, and to enable it for general scientific use, they yield a precise transmission spectrum which we find is featureless down to the precision level of the instrument, consistent with expectations given HAT-P-14~b's small scale-height and hence expected atmospheric features. The exquisite quality and stability of the \emph{JWST/NIRSpec} transit spectrum -- almost devoid of any systematic effects -- allowed us to obtain median uncertainties of 50-60 ppm in this wavelength range at a resolution of R=100R=100 in a single exposure, which is in excellent agreement with pre-flight expectations and close to the (or at the) photon-noise limit for a J=9.094J = 9.094, F-type star like HAT-P-14. These observations showcase the ability of NIRSpec/BOTS to perform cutting-edge transiting exoplanet atmospheric science, setting the stage for observations and discoveries to be made in Cycle 1 and beyond.Comment: 16 pages, 14 figures; part of the PASP Focus Issue "JWST Time-Series Observations: Commissioning Performance". Paper after the first round of referee comments; inputs welcom

    Hiding in plain sight: observing planet-starspot crossings with the James Webb Space Telescope

    Get PDF
    Transiting exoplanets orbiting active stars frequently occult starspots and faculae on the visible stellar disc. Such occultations are often rejected from spectrophotometric transits, as it is assumed they do not contain relevant information for the study of exoplanet atmopsheres. However, they can provide useful constraints to retrieve the temperature of active features and their effect on transmission spectra. We analyse the capabilities of the James Webb Space Telescope in the determination of the spectra of occulted starspots, despite its lack of optical wavelength instruments on board. Focusing on K and M spectral types, we simulate starspots with different temperatures and in different locations of the stellar disc, and find that starspot temperatures can be determined to within a few hundred kelvins using NIRSpec/Prism and the proposed NIRCam/F150W2++F322W2's broad wavelength capabilities. Our results are particularly promising in the case of K and M dwarfs of magK12.5_K \leq 12.5 with large temperature contrasts
    corecore