257 research outputs found

    Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    Get PDF
    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ13C and δ15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores

    Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0

    Get PDF
    The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program

    Genome-wide signatures of population bottlenecks and diversifying selection in European wolves

    Get PDF
    Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability.Heredity advance online publication, 18 December 2013; doi:10.1038/hdy.2013.122

    Central Mass Concentration and Bar Dissolution in Nearby Spiral Galaxies

    Get PDF
    We use data from the BIMA Survey of Nearby Galaxies (SONG) to investigate the relationship between ellipticity and central mass concentration in barred spirals. Existing simulations predict that bar ellipticity decreases as inflowing mass driven by the bar accumulates in the central regions, ultimately destroying the bar. Using the ratio of the bulge mass to the mass within the bar radius as an estimate of the central mass concentration, we obtain dynamical mass estimates from SONG CO 1-0 rotation curve data. We find an inverse correlation between bar ellipticity and central mass concentration, consistent with simulations of bar dissolution.Comment: 10 pages, 2 figures and 2 tables, accepted for publication in the Astrophysical Journa

    The rotation curves of dwarf galaxies: a problem for Cold Dark Matter?

    Full text link
    We address the issue of accuracy in recovering density profiles from observations of rotation curves of galaxies. We ``observe'' and analyze our models in much the same way as observers do the real galaxies. We find that the tilted ring model analysis produces an underestimate of the central rotational velocity. In some cases the galaxy halo density profile seems to have a flat core, while in reality it does not. We identify three effects, which explain the systematic biases: (1) inclination (2), small bulge, and (3) bar. The presence of even a small non-rotating bulge component reduces the rotation velocity. In the case of a disk with a bar, the underestimate of the circular velocity is larger due to a combination of non-circular motions and random velocities. Signatures of bars can be difficult to detect in the surface brightness profiles of the model galaxies. The variation of inclination angle and isophote position angle with radius are more reliable indicators of bar presence than the surface brightness profiles. The systematic biases in the central ~ 1 kpc of galaxies are not large. Each effect separately gives typically a few kms error, but the effects add up. In some cases the error in circular velocity was a factor of two, but typically we get about 20 percent. The result is the false inference that the density profile of the halo flattens in the central parts. Our observations of real galaxies show that for a large fraction of galaxies the velocity of gas rotation (as measured by emission lines) is very close to the rotation of stellar component (as measured by absorption lines). This implies that the systematic effects discussed in this paper are also applicable both for the stars and emission-line gas.Comment: ApJ, in press, 30 pages, Latex, 21 .eps figure

    Internal Dynamics, Structure and Formation of Dwarf Elliptical Galaxies: II. Rotating Versus Non-Rotating Dwarfs

    Full text link
    We present spatially-resolved internal kinematics and stellar chemical abundances for a sample of dwarf elliptical (dE) galaxies in the Virgo Cluster observed with Keck/ESI. We find that 4 out of 17 dEs have major axis rotation velocities consistent with rotational flattening, while the remaining dEs have no detectable major axis rotation. Despite this difference in internal kinematics, rotating and non-rotating dEs are remarkably similar in terms of their position in the Fundamental Plane, morphological structure, stellar populations, and local environment. We present evidence for faint underlying disks and/or weak substructure in a fraction of both rotating and non-rotating dEs, but a comparable number of counter-examples exist for both types which show no evidence of such structure. Absorption-line strengths were determined based on the Lick/IDS system (Hbeta, Mgb, Fe5270, Fe5335) for the central region of each galaxy. We find no difference in the line-strength indices, and hence stellar populations, between rotating and non-rotating dE galaxies. The best-fitting mean age and metallicity for our 17 dE sample are 5 Gyr and Fe/H = -0.3 dex, respectively, with rms spreads of 3 Gyr and 0.1 dex. The majority of dEs are consistent with solar alpha/Fe abundance ratios. By contrast, the stellar populations of classical elliptical galaxies are, on average, older, more metal rich, and alpha-enhanced relative to our dE sample. The local environments of both dEs types appear to be diverse in terms of their proximity to larger galaxies in real or velocity space within the Virgo Cluster. Thus, rotating and non-rotating dEs are remarkably similar in terms of their structure, stellar content, and local environments, presenting a significant challenge to theoretical models of their formation. (abridged)Comment: 33 pages, 12 figures. To appear in the October 2003 Astronomical Journal. See http://www.ucolick.org/~mgeha/geha_dE.ps.gz for version with high resolution figure

    The Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)

    Full text link
    We present optical images of the nucleus of the nearby radio galaxy M84 (NGC 4374 = 3C272.1) obtained with the Wide Field/Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope (HST). Our three images cover the Hα\alpha + [N II] emission lines as well as the V and I continuum bands. Analysis of these images confirms that the Hα\alpha + [N II] emission in the central 5'' (410 pc) is elongated along position angle (P.A.) \approx 72\arcdeg, which is roughly parallel to two nuclear dust lanes.Our high-resolution images reveal that the Hα\alpha + [N II] emission has three components, namely a nuclear gas disk,an `ionization cone', and outer filaments. The nuclear disk of ionized gas has diameter 1=82\approx 1'' = 82 pc and major axis P.A. \approx 58\arcdeg \pm 6\arcdeg. On an angular scale of 0\farcs5, the major axis of this nuclear gas disk is consistent with that of the dust. However, the minor axis of the gas disk (P.A. \approx 148\arcdeg) is tilted with respect to that of the filamentary Hα\alpha + [N II] emission at distances > 2'' from the nucleus; the minor axis of this larger scale gas is roughly aligned with the axis of the kpc-scale radio jets (P.A. \approx 170\arcdeg). The ionization cone (whose apex is offset by \approx 0\farcs3 south of the nucleus) extends 2'' from the nucleus along the axis of the southern radio jet. This feature is similar to the ionization cones seen in some Seyfert nuclei, which are also aligned with the radio axes.Comment: 11 pages plus 4 figure

    The impact of pre-existing hypertension and its treatment on outcomes in patients admitted to hospital with COVID-19

    Get PDF
    The impact of pre-existing hypertension on outcomes in patients with the novel corona virus (SARS-CoV-2) remains controversial. To address this, we examined the impact of pre-existing hypertension and its treatment on in-hospital mortality in patients admitted to hospital with Covid-19. Using the CAPACITY-COVID patient registry we examined the impact of pre-existing hypertension and guideline-recommended treatments for hypertension on in-hospital mortality in unadjusted and multi-variate-adjusted analyses using logistic regression. Data from 9197 hospitalised patients with Covid-19 (median age 69 [IQR 57-78] years, 60.6% male, n = 5573) was analysed. Of these, 48.3% (n = 4443) had documented pre-existing hypertension. Patients with pre-existing hypertension were older (73 vs. 62 years, p < 0.001) and had twice the occurrence of any cardiac disease (49.3 vs. 21.8%; p < 0.001) when compared to patients without hypertension. The most documented class of anti-hypertensive drugs were angiotensin receptor blockers (ARB) or angiotensin converting enzyme inhibitors (ACEi) (n = 2499, 27.2%). In-hospital mortality occurred in (n = 2020, 22.0%), with more deaths occurring in those with pre-existing hypertension (26.0 vs. 18.2%, p < 0.001). Pre-existing hypertension was associated with in-hospital mortality in unadjusted analyses (OR 1.57, 95% CI 1.42,1.74), no significant association was found following multivariable adjustment for age and other hypertension-related covariates (OR 0.97, 95% CI 0.87,1.10). Use of ACEi or ARB tended to have a protective effect for in-hospital mortality in fully adjusted models (OR 0.88, 95% CI 0.78,0.99). After appropriate adjustment for confounding, pre-existing hypertension, or treatment for hypertension, does not independently confer an increased risk of in-hospital mortality patients hospitalized with Covid-19

    The Isophotal Structure of Early-Type Galaxies in the SDSS: Dependence on AGN Activity and Environment

    Full text link
    We study the dependence of the isophotal shape of early-type galaxies on their absolute B-band magnitude, their dynamical mass, and their nuclear activity and environment, using an unprecedented large sample of 847 early-type galaxies identified in the SDSS by Hao et al (2006). We find that the fraction of disky galaxies smoothly decreases with increasing luminosity. The large sample allows us to describe these trends accurately with tight linear relations that are statistically robust against the uncertainty in the isophotal shape measurements. There is also a host of significant correlations between the disky fraction and indicators of nuclear activity (both in the optical and in the radio) and environment (soft X-rays, group mass, group hierarchy). Our analysis shows however that these correlations can be accurately matched by assuming that the disky fraction depends only on galaxy luminosity or mass. We therefore conclude that neither the level of activity, nor group mass or group hierarchy help in better predicting the isophotal shape of early-type galaxies.Comment: 31 pages, 10 figures, accepted for publication in Ap

    The Stellar Kinematic Fields of NGC 3379

    Full text link
    We have measured the stellar kinematic profiles of NGC 3379 along four position angles using the MMT. The data extend 90" from the center, at essentially seeing-limited resolution out to 17". The mean velocities and dispersions have total errors better than 10 km/s (frequently better than 5 km/s) out to 55". We find very weak (3 km/s) rotation on the minor axis interior to 12", and no detectable rotation above 6 km/s from 12" to 50" or above 16 km/s out to 90" (95% confidence). However, a Fourier reconstruction of the mean velocity field from all 4 sampled PAs does indicate a 5 degree twist of the kinematic major axis, opposite to the known isophotal twist. The h_3 and h_4 parameters are small over the entire observed region. The azimuthally-averaged dispersion profile joins smoothly at large radii with the dispersions of planetary nebulae. Unexpectedly, we find sharp bends in the major-axis rotation curve, also visible (though less pronounced) on the diagonal position angles. The outermost bend coincides in position with other sharp kinematic features: an abrupt flattening of the dispersion profile, and local peaks in h_3 and h_4. All of these features are in a region where the surface brightness profile departs significantly from a de Vaucouleurs law. Features such as these are not generally known in ellipticals owing to a lack of data at comparable resolution; however, very similar behavior is seen the kinematics of the edge-on S0 NGC 3115. We discuss the suggestion that NGC 3379 could be a misclassified S0; preliminary results from dynamical modeling indicate that it may be a flattened, weakly triaxial system seen in an orientation that makes it appear round.Comment: 31 pages incl. 4 tables, Latex, AASTeX v4.0, with 17 eps figures. To appear in The Astronomical Journal, February 199
    corecore