3,322 research outputs found

    Didemnin B: Comparative study and conformational approach in solution

    Get PDF
    A comparative study of isodideimnine-1 and didemnin B is presented using spcctroecopic methods, partial degradation and partial synthesis. This leads to the conclusion of the presence of a single depsipeptide, namely didemnin B, with (3S,4R,5S) isostatine instead of the previous statine residue. An attempt to determine the whole conformation in solution of didemnin B by using 2D-NMR is also described

    Search for a light charged Higgs boson in the decay channel H^+→cs in tt events using pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    A search for a charged Higgs boson (H^+) in tt decays is presented, where one of the top quarks decays via t→H^+ b, followed by H^+→ two jets (cs). The other top quark decays to Wb, where the W boson then decays into a lepton (e/μ) and a neutrino. The data were recorded in pp collisions at s√=7 TeV by the ATLAS detector at the LHC in 2011, and correspond to an integrated luminosity of 4.7 fb^(−1). With no observation of a signal, 95 % confidence level (CL) upper limits are set on the decay branching ratio of top quarks to charged Higgs bosons varying between 5 % and 1 % for H^+ masses between 90 GeV and 150 GeV, assuming B(H^+→cs)=100%

    Extension of SPIS to simulate dust electrostatic charging, transport and contamination of lunar probes

    Get PDF
    A modification of the Spacecraft Plasma Interaction Software has been undertaken under ESA contract 4000107327/12/NL/AK (SPIS-DUST). The primary goal is to provide mission designers with an engineering tool capable of predicting charged dust behavior in a given plasma environment involving a spacecraft / exploration unit in contact with complex topological features at various locations of the Moon’s surface. The tool also aims at facilitating dust contamination diagnostics for sensitive surfaces such as sensors optics, solar panels, thermal interfaces, etc. In this paper, the new user interface and the new numerical solvers developed in the frame of this project is presented. The pre-processing includes the building of a 3D lunar surface from a topology description (i.e. a point list), an interface to position the spacecraft and a merging interface for the spacecraft elements in contact with the lunar surface. Concerning the physical models, the new solvers have been developed in order to model the physics of the ejection of the dust from the soils, the dusts charging and transport in volume and the dust interaction and contamination of the spacecraft. The post-processing includes the standard outputs of SPIS for the electrostatic computation and the plasma plus dedicated instruments for the diagnosis of the dusts. A set of verification test cases are presented in order to demonstrate the new capabilities of this version of SPIS in realistic conditions
    corecore