207 research outputs found

    Transcriptional Regulation of the GluR2 Gene: Neural-Specific Expression, Multiple Promoters, and Regulatory Elements

    Get PDF
    To understand how neurons control the expression of the AMPA receptor subunit GluR2, we cloned the 5' proximal region of the rat gene and investigated GluR2 promoter activity by transient transfection. RNase protection and primer extension of rat brain mRNA revealed multiple transcription initiation sites from -340 to -481 bases upstream of the GluR2 AUG codon. The relative use of 5' start sites was different in cortex and cerebellum, indicating complexity of GluR2 transcript expression among different sets of neurons. When GluR2 promoter activity was investigated by plasmid transfection into cultured cortical neurons, cortical glia, and C6 glioma cells, the promoter construct with the strongest activity, per transfected cell, was 29.4-fold (+/- 3.7) more active in neurons than in non-neural cells. Immunostaining of cortical cultures showed that >97% of the luciferase-positive cells also expressed the neuronal marker MAP-2. Evaluation of internal deletion and substitution mutations identified a functional repressor element I RE1-like silencer and functional Sp1 and nuclear respiratory factor-1 (NRF-1) elements within a GC-rich proximal GluR2 promoter region. The GluR2 silencer reduced promoter activity in glia and non-neuronal cell lines by two- to threefold, was without effect in cortical neurons, and could bind the RE1-silencing transcription factor (REST) because cotransfection of REST into neurons reduced GluR2 promoter activity in a silencer-dependent manner. Substitution of the GluR2 silencer by the homologous NaII RE1 silencer further reduced GluR2 promoter activity in non-neuronal cells by 30-47%. Maximal positive GluR2 promoter activity required both Sp1 and NRF-1 cis elements and an interelement nucleotide bridge sequence. These results indicate that GluR2 transcription initiates from multiple sites, is highly neuronal selective, and is regulated by three regulatory elements in the 5' proximal promoter region

    Role of LAG-3 in Regulatory T Cells

    Get PDF
    AbstractRegulatory T cells (Tregs) limit autoimmunity but also attenuate the magnitude of antipathogen and antitumor immunity. Understanding the mechanism of Treg function and therapeutic manipulation of Tregs in vivo requires identification of Treg-selective receptors. A comparative analysis of gene expression arrays from antigen-specific CD4+ T cells differentiating to either an effector/memory or a regulatory phenotype revealed Treg-selective expression of LAG-3, a CD4-related molecule that binds MHC class II. Antibodies to LAG-3 inhibit suppression by induced Tregs both in vitro and in vivo. Natural CD4+CD25+ Tregs express LAG-3 upon activation, which is significantly enhanced in the presence of effector cells, whereas CD4+CD25+ Tregs from LAG-3−/− mice exhibit reduced regulatory activity. Lastly, ectopic expression of LAG-3 on CD4+ T cells significantly reduces their proliferative capacity and confers on them suppressor activity toward effector T cells. We propose that LAG-3 marks regulatory T cell populations and contributes to their suppressor activity

    Sequencing the Potato Genome: Outline and First Results to Come from the Elucidation of the Sequence of the World’s Third Most Important Food Crop

    Get PDF
    Potato is a member of the Solanaceae, a plant family that includes several other economically important species, such as tomato, eggplant, petunia, tobacco and pepper. The Potato Genome Sequencing Consortium (PGSC) aims to elucidate the complete genome sequence of potato, the third most important food crop in the world. The PGSC is a collaboration between 13 research groups from China, India, Poland, Russia, the Netherlands, Ireland, Argentina, Brazil, Chile, Peru, USA, New Zealand and the UK. The potato genome consists of 12 chromosomes and has a (haploid) length of approximately 840 million base pairs, making it a medium-sized plant genome. The sequencing project builds on a diploid potato genomic bacterial artificial chromosome (BAC) clone library of 78000 clones, which has been fingerprinted and aligned into ~7000 physical map contigs. In addition, the BAC-ends have been sequenced and are publicly available. Approximately 30000 BACs are anchored to the Ultra High Density genetic map of potato, composed of 10000 unique AFLPTM markers. From this integrated genetic-physical map, between 50 to 150 seed BACs have currently been identified for every chromosome. Fluorescent in situ hybridization experiments on selected BAC clones confirm these anchor points. The seed clones provide the starting point for a BAC-by-BAC sequencing strategy. This strategy is being complemented by whole genome shotgun sequencing approaches using both 454 GS FLX and Illumina GA2 instruments. Assembly and annotation of the sequence data will be performed using publicly available and tailor-made tools. The availability of the annotated data will help to characterize germplasm collections based on allelic variance and to assist potato breeders to more fully exploit the genetic potential of potat

    Associations between the legal context of HIV, perceived social capital, and HIV antiretroviral adherence in North America

    Get PDF
    Background Human rights approaches to manage HIV and efforts to decriminalize HIV exposure/transmission globally offer hope to persons living with HIV (PLWH). However, among vulnerable populations of PLWH, substantial human rights and structural challenges (disadvantage and injustice that results from everyday practices of a well-intentioned liberal society) must be addressed. These challenges span all ecosocial context levels and in North America (Canada and the United States) can include prosecution for HIV nondisclosure and HIV exposure/transmission. Our aims were to: 1) Determine if there were associations between the social structural factor of criminalization of HIV exposure/transmission, the individual factor of perceived social capital (resources to support one’s life chances and overcome life’s challenges), and HIV antiretroviral therapy (ART) adherence among PLWH and 2) describe the nature of associations between the social structural factor of criminalization of HIV exposure/transmission, the individual factor of perceived social capital, and HIV ART adherence among PLWH. Methods We used ecosocial theory and social epidemiology to guide our study. HIV related criminal law data were obtained from published literature. Perceived social capital and HIV ART adherence data were collected from adult PLWH. Correlation and logistic regression were used to identify and characterize observed associations. Results Among a sample of adult PLWH (n = 1873), significant positive associations were observed between perceived social capital, HIV disclosure required by law, and self-reported HIV ART adherence. We observed that PLWH who have higher levels of perceived social capital and who live in areas where HIV disclosure is required by law reported better average adherence. In contrast, PLWH who live in areas where HIV transmission/exposure is a crime reported lower 30-day medication adherence. Among our North American participants, being of older age, of White or Hispanic ancestry, and having higher perceived social capital, were significant predictors of better HIV ART adherence. Conclusions Treatment approaches offer clear advantages in controlling HIV and reducing HIV transmission at the population level. These advantages, however, will have limited benefit for adherence to treatments without also addressing the social and structural challenges that allow HIV to continue to spread among society’s most vulnerable populations

    Development of a Multilevel Intervention to Increase Colorectal Cancer Screening in Appalachia

    Get PDF
    Background Colorectal cancer (CRC) screening rates are lower in Appalachian regions of the United States than in non-Appalachian regions. Given the availability of various screening modalities, there is critical need for culturally relevant interventions addressing multiple socioecological levels to reduce the regional CRC burden. In this report, we describe the development and baseline findings from year 1 of “Accelerating Colorectal Cancer Screening through Implementation Science (ACCSIS) in Appalachia,” a 5-year, National Cancer Institute Cancer MoonshotSM-funded multilevel intervention (MLI) project to increase screening in Appalachian Kentucky and Ohio primary care clinics. Methods Project development was theory-driven and included the establishment of both an external Scientific Advisory Board and a Community Advisory Board to provide guidance in conducting formative activities in two Appalachian counties: one in Kentucky and one in Ohio. Activities included identifying and describing the study communities and primary care clinics, selecting appropriate evidence-based interventions (EBIs), and conducting a pilot test of MLI strategies addressing patient, provider, clinic, and community needs. Results Key informant interviews identified multiple barriers to CRC screening, including fear of screening, test results, and financial concerns (patient level); lack of time and competing priorities (provider level); lack of reminder or tracking systems and staff burden (clinic level); and cultural issues, societal norms, and transportation (community level). With this information, investigators then offered clinics a menu of EBIs and strategies to address barriers at each level. Clinics selected individually tailored MLIs, including improvement of patient education materials, provision of provider education (resulting in increased knowledge, p = .003), enhancement of electronic health record (EHR) systems and development of clinic screening protocols, and implementation of community CRC awareness events, all of which promoted stool-based screening (i.e., FIT or FIT-DNA). Variability among clinics, including differences in EHR systems, was the most salient barrier to EBI implementation, particularly in terms of tracking follow-up of positive screening results, whereas the development of clinic-wide screening protocols was found to promote fidelity to EBI components. Conclusions Lessons learned from year 1 included increased recognition of variability among the clinics and how they function, appreciation for clinic staff and provider workload, and development of strategies to utilize EHR systems. These findings necessitated a modification of study design for subsequent years. Trial registration Trial NCT04427527 is registered at https://clinicaltrials.gov and was registered on June 11, 2020

    Epigenetic silencing of DSC3 is a common event in human breast cancer

    Get PDF
    INTRODUCTION: Desmocollin 3 (DSC3) is a member of the cadherin superfamily of calcium-dependent cell adhesion molecules and a principle component of desmosomes. Desmosomal proteins such as DSC3 are integral to the maintenance of tissue architecture and the loss of these components leads to a lack of adhesion and a gain of cellular mobility. DSC3 expression is down-regulated in breast cancer cell lines and primary breast tumors; however, the loss of DSC3 is not due to gene deletion or gross rearrangement of the gene. In this study, we examined the prevalence of epigenetic silencing of DSC3 gene expression in primary breast tumor specimens. METHODS: We used bisulfite genomic sequencing to analyze the methylation state of the DSC3 promoter region from 32 primary breast tumor specimens. We also used a quantitative real-time RT-PCR approach, and analyzed all breast tumor specimens for DSC3 expression. Finally, in addition to bisulfite sequencing and RT-PCR, we used an in vivo nuclease accessibility assay to determine the chromatin architecture of the CpG island region from DSC3-negative breast cancer cells lines. RESULTS: DSC3 expression was downregulated in 23 of 32 (72%) breast cancer specimens comprising: 22 invasive ductal carcinomas, 7 invasive lobular breast carcinomas, 2 invasive ductal carcinomas that metastasized to the lymph node, and a mucoid ductal carcinoma. Of the 23 specimens showing a loss of DSC3 expression, 13 (56%) were associated with cytosine hypermethylation of the promoter region. Furthermore, DSC3 expression is limited to cells of epithelial origin and its expression of mRNA and protein is lost in a high proportion of breast tumor cell lines (79%). Lastly, DNA hypermethylation of the DSC3 promoter is highly correlated with a closed chromatin structure. CONCLUSION: These results indicate that the loss of DSC3 expression is a common event in primary breast tumor specimens, and that DSC3 gene silencing in breast tumors is frequently linked to aberrant cytosine methylation and concomitant changes in chromatin structure

    Tryptophan degradation in women with breast cancer: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Altered tryptophan metabolism and indoleamine 2,3-dioxygenase activity are linked to cancer development and progression. In addition, these biological factors have been associated with the development and severity of neuropsychiatric syndromes, including major depressive disorder. However, this biological mechanism associated with both poor disease outcomes and adverse neuropsychiatric symptoms has received little attention in women with breast cancer. Therefore, a pilot study was undertaken to compare levels of tryptophan and other proteins involved in tryptophan degradation in women with breast cancer to women without cancer, and secondarily, to examine levels in women with breast caner over the course of chemotherapy.</p> <p>Findings</p> <p>Blood samples were collected from women with a recent diagnosis of breast cancer (<it>n </it>= 33) before their first cycle of chemotherapy and after their last cycle of chemotherapy. The comparison group (<it>n </it>= 24) provided a blood sample prior to breast biopsy. Plasma concentrations of tryptophan, kynurenine, and tyrosine were determined. The kynurenine to tryptophan ratio (KYN/TRP) was used to estimate indoleamine 2,3-dioxygenase activity. On average, the women with breast cancer had lower levels of tryptophan, elevated levels of kynurenine and tyrosine and an increased KYN/TRP ratio compared to women without breast cancer. There was a statistically significant difference between the two groups in the KYN/TRP ratio (<it>p </it>= 0.036), which remained elevated in women with breast cancer throughout the treatment trajectory.</p> <p>Conclusions</p> <p>The findings of this pilot study suggest that increased tryptophan degradation may occur in women with early-stage breast cancer. Given the multifactorial consequences of increased tryptophan degradation in cancer outcomes and neuropsychiatric symptom manifestation, this biological mechanism deserves broader attention in women with breast cancer.</p
    corecore