39 research outputs found

    Modulation des réactions alloimmunitaires par les cytokines maîtresses IFN-γ et TGF-β

    Full text link
    L’injection de cellules immunologiquement compétentes à un hôte histo-incompatible amène une réaction qui peut se traduire par la maladie du greffon-contre-l’hôte (GVHD). La GVHD demeure une barrière importante à une utilisation plus répandue de la greffe allogénique de cellules hématopoïétiques (AHCT), pourtant un traitement efficace pour traiter de nombreuses maladies. Une meilleure compréhension des mécanismes qui sous-tendent cette pathologie pourrait en faciliter le traitement et la prévention. L’Interféron-gamma (IFN-γ) et le Transforming Growth Factor-béta (TGF-β) sont deux cytokines maîtresses de l’immunité impliquées dans la fonction et l’homéostasie des cellules greffées. Nous démontrons chez la souris que l’IFN-γ limite la reconstitution lympho-hématopoïétique de façon dose-dépendante en mobilisant des mécanismes d’apoptose et en inhibant la prolifération cellulaire. Le TGF-β est quant à lui généralement connu comme un immunosuppresseur qui contrôle l’immunité en utilisant plusieurs voies de signalisation. Le rôle relatif de ces voies en AHCT est inconnu. Nous avons étudié une de ces voies en greffant des cellules provenant de donneurs déficients pour le gène SMAD3 (SMAD3-KO), un médiateur central de la voie canonique du TGF-β, à des souris histo-incompatibles. Bien que l’absence de SMAD3 ne cause aucune maladie chez nos souris donneuses, l’injection de cellules SMAD3-KO amène une GVHD du colon sévère chez le receveur. Cette atteinte est caractérisée par une différenciation Th1 et une infiltration massive de granulocytes témoignant d’un rôle central de SMAD3 dans la physiologie des lymphocytes T CD4 et des cellules myéloïdes. Nous avons focalisé ensuite nos efforts sur le rôle de SMAD3 chez les lymphocytes T CD4 en sachant que SMAD3 était actif chez les lymphocytes T CD4 tolérants. Nous avons découvert que SMAD3 était rapidement inactivé après une activation des cellules T, suggérant que l’inactivation de SMAD3 était fonctionnellement importante pour briser l’état de tolérance. Des études de micro-puces d’ADNc nous ont montré que SMAD3 contrôlait en effet l’expression de nombreux transcrits de gènes connus comme étant reliés à la tolérance et/ou à des processus biologiques dont les rôles dans le maintien de la tolérance sont plausibles.The injection of immuno-competent cells into a histo-incompatible host can result in the development of Graft-versus-Host disease (GVHD). GVHD is the most significant barrier to a more widespread use of allogeneic hematopoietic cell transplantation (AHCT), a potent treatment for several diseases. A better understanding of the pathophysiological underpinnings of GVHD would facilitate the design of rational approaches to treat and prevent this complication of AHCT. Gamma-interferon (IFN-γ) and Transforming Growth Factor-beta (TGF-β) are master cytokines of immunity and have a role in the function and homeostasis of transplanted cells. Using a murine model, we show that IFN-γ curtails lympho-hamatopoitic reconstitution in a dose-dependent fashion by increasing apoptosis and by limiting donor cell proliferation. TGF-β is an immunosuppressive cytokine that controls immune cells through multiple signaling pathways. The relative contribution of these pathways in AHCT is unknown. We specifically studied the role of one of these pathways by transplanting SMAD3 deficient cells (SMAD3-KO) in histo-incompatible hosts. SMAD3 is a key mediator of the so-called canonical TGF-β signaling pathway. Although SMAD3-KO donor mice are healthy, the injection of SMAD3-KO cells leads to severe GVHD in the hosts, characterized by intestinal involvement associated with Th1 skewing and massive granulocyte infiltration. These findings hint at a crucial role for SMAD3 in CD4 T-cell and myeloid cell biology. We then focalized on the role of SMAD3 in CD4 T cells knowing that SMAD3 is active in tolerant, resting CD4 T cells. We found that SMAD3 was rapidly inactivated upon T cell activation, suggesting that SMAD3 inactivation was functionally important to break the state of tolerance. Our cDNA microarray experiments show that indeed, SMAD3 regulates the transcript levels of multiple genes known to be involved in T cell tolerance and in biological processes plausibly related to immune tolerance

    Immunoregulatory CD4-CD8- T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer

    Get PDF
    A central objective in organ transplantation and the treatment or prevention of autoimmune disease is the achievement of antigen-specific immune tolerance. An additional challenge in bone marrow transplantation for the treatment of hematological malignancies is the prevention of graft-vs-host disease (GVHD) while maintaining graft-vs-tumor activity. Interestingly, CD4-CD8- (double negative, DN) T cells, which exhibit a unique antigen-specific immunoregulatory potential, appear to exhibit all of the properties to respond to these challenges. Herein, we review the therapeutic potential of immunoregulatory DN T cells in various immunopathological settings, including graft tolerance, GVHD, cancer, and autoimmunity

    More Haste, Less Speed: Could Public–Private Partnerships Advance Cellular Immunotherapies?

    Get PDF
    Cellular immunotherapies promise to transform cancer care. However, they must overcome serious challenges, including: (1) the need to identify and characterize novel cancer antigens to expand the range of therapeutic targets; (2) the need to develop strategies to minimize serious adverse events, such as cytokine release syndrome and treatment-related toxicities; and (3) the need to develop efficient production/manufacturing processes to reduce costs. Here, we discuss whether these challenges might better be addressed through forms of public–private research collaborations, including public–private partnerships (PPPs), or whether these challenges are best addressed by way of standard market transactions. We reviewed 14 public–private relationships and 25 underlying agreements for the clinical development of cancer cellular immunotherapies in the US. Most were based on bilateral research agreements and pure market transactions in the form of service contracts and technology licenses, which is representative of the commercialization focus of the field. We make the strategic case that multiparty PPPs may better advance cancer antigen discovery and characterization and improved cell processing/manufacturing and related activities. In the rush toward the competitive end of the translational continuum for cancer cellular immunotherapy and the attendant focus on commercialization, many gaps have appeared in our understanding of cellular biology, immunology, and bioengineering. We conclude that the model of bilateral agreements between leading research institutions and the private sector may be inadequate to efficiently harness the interdisciplinary skills and knowledge of the public and private sectors to bring these promising therapies to the clinic for the benefit of cancer patients

    High-throughput volume refractive index distribution measurement through mechanical deformation of single cells

    Get PDF
    This paper reports a high-throughput microphotonic biosensor measuring volume refractive index distribution through mechanical deformation of single cells. Preliminary results suggest that different cell states can be distinguished. This feature could readily add novel parameters for cell analysis without resorting to nucleic acid dies

    The importance of single-mode behavior in silicon-on-insulator rib waveguides with very large cross section for resonant sensing applications

    Get PDF
    Control of light properties through propagation in large cross section optical rib waveguides is of utmost importance to obtain the desired behavior, especially with resonant cavities. We have simulated, fabricated, and experimentally tested optical rib waveguides to evaluate the advantages of single-mode properties against multimode. Modal analysis of very large cross section rib waveguides showed that only particular dimensions allow a single-mode behavior. Furthermore, on-chip Fabry-Perot cavities were coupled to rib waveguides to assess impacts for a typical resonator. Experimental results are in good agreement with simulation guidelines, effectively highlighting the importance of single-mode behavior for resonant sensing applications

    Blasts in context:the impact of the immune environment on acute myeloid leukemia prognosis and treatment

    Get PDF
    Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.</p

    High-throughput refractive index-based microphotonic sensor for enhanced cellular discrimination

    Get PDF
    This paper presents a novel microphotonic sensor based on silicon technologies for high-throughput single cell measurements. It employs a highly sensitive Fabry-PĂ©rot resonant cavity to extract cellular refractive index information. The integrated large cross-section rib waveguides provide a single-mode like behavior important for resonant cell sensing. Differentiated myeloid cells derived from a promyelocytic leukemia cell line were injected in a microchannel, sheathlessly focused using inertial forces and analyzed while flowing through the resonant cavity volume. Results were compared against a commercial flow cytometer and showed a substantial improvement on cellular discrimination. Thus, this sensor has the ability to discriminate cell populations, usually identified using fluorescent parameters, without any dyes and can reach measurement rate as high as 2000 cells per second. By harnessing the cell's effective volume refractive index, our device offers complementary measurements readily improving actual technologies and thus providing crucial information for research and clinical professionals

    Immature and mature bone marrow-derived dendritic cells exhibit distinct intracellular mechanical properties

    Get PDF
    ABSTRACT: Dendritic cells (DCs) patrol the organism at an immature stage to detect the presence of pathogens. Once activated, these mature DCs reach the lymph nodes to activate antigen-specific T lymphocytes and thus initiate an adaptative immune response to control the pathogen. The migration of both immature and mature DCs is a key process for their optimal function. DC migration requires transit through narrow constrictions that is allowed by their high local and global deformation capabilities. In addition to cytoplasmic changes, the nucleus mechanical properties also have a major impact for cellular migration and motility. Yet, nucleus intracellular mobility of dendritic cells or its variation upon maturation have not been investigated. Our study defines the biophysical phenotypic variations of dendritic cells upon maturation using interferometric deformability cytometry. This method characterizes different cellular mechanical properties, such as elongation and nucleus offset, by assessing the refractive index spatial distribution of shear-induced deformed cells. By using these parameters, our data suggest that in vitro bone marrow derived dendritic cell (BMDC) maturation induces cell stiffening and reduces nucleus mobility, allowing to distinguish immature and mature dendritic cells. Overall, our method provides insights on intracellular mechanical properties of two dendritic cell states
    corecore