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A B S T R A C T   

Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological 
conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this 
review, we summarize our present understanding of the role of the immune microenvironment on healthy bone 
marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function 
of different immune cells involved in the AML microenvironment as well as their putative role in the onset of 
disease and response to treatment are presented. We also describe how the immune context predicts the response 
to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we 
focus on allogeneic stem cell transplantation and summarize the current understanding of the immune envi
ronment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies 
to prevent and treat relapse.   

1. Introduction 

The bone marrow is both a hematopoietic and immune organ, as well 
as the site of disease of the overwhelming majority of acute myelogenous 
leukemias (AML). Neoplastic microenvironments are central to cancer 
evolution and resistance or sensitivity to treatments [1]. Among the 
various cell types that interact with malignant cells schematized in 
Fig. 1, immune cells are of special interest given the increasing impor
tance of immunotherapeutic approaches being investigated and used to 
treat hematopoietic cancers, including AML [2,3]. This review focuses 
on the lymphoid cells that populate the bone marrow in AML and their 
relevance to prognosis and therapy. Several other cell types contribute 
to the medullary AML environment, such as myeloid cells (macrophage 
and myeloid-derived suppressor cells – MDSC), dendritic cells, or 
mesenchymal stem cells that can support the leukemogenic process and 
influence positively or negatively the immune response against AML 
[2,4–9]. While these cells will not be examined in detail in this review, 

their relevance to lymphoid cell function in AML will be discussed when 
appropriate. 

2. Bone marrow as a lymphoid organ 

The bone marrow (BM) acts primarily as a hematopoietic organ. 
However, the bone marrow hosts a variety of immune and non- 
hematopoietic cells that have an active role in immunity. 

Among these, lymphoid cells including conventional and regulatory 
T cells, natural killer (NK) cells, gamma-delta (γδ) T cells, B and plasma 
cells, are relevant to both normal bone marrow physiology and patho
logical states [10]. 

Post thymic naïve T cells circulate in peripheral blood or reside in 
secondary lymphoid organs where they encounter antigen, and further, 
differentiate into effector and memory T cells. A significant fraction of 
the memory T cell pool transits and resides in the bone marrow [11–13]. 
Specifically, 8-20% of BM mononuclear cells are lymphocytes showing T 
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cell:B cell ratio of approximately 5:1 [10]. Although the majority of T 
cells present in the BM have already encountered an antigen, studies in 
mice demonstrated that primary T cell responses to antigens also occur 
in the medullary environment. This implies that circulating naïve T cells 
can home to and be primed to respond to antigen in the BM [14]. The BM 
stroma is a significant source of homeostatic cytokines such as IL-7 and 
IL-15 that support proliferation of T cells in the absence of antigen, 
making the marrow microenvironment an “immune memory reservoir” 
[11,12,15]. High numbers of antigen-specific CD8 T cells have been 
shown to persist in the BM for several months after antigen encounter 
and display anti-infectious or anti-tumor activity. Indeed, adoptive 
transfer of BM from lymphochoriomeningitis virus-immunized mice to 
immunodeficient recipients protected them from chronic infection 
[10,13,16]. While capable of inducing potent anti-leukemic effects 
following allogeneic stem cell transplantation (HSCT), central memory 
CD8 T cells decrease the risk of alloantigen recognition and graft versus 
host disease (GVHD) [17,18]. 

T cells benefit from the BM environment, and reciprocally provide a 
supportive environment for hematopoiesis through the secretion of cy
tokines and the expression of chemokine receptors [19]. T cells 
contribute to normal hematopoiesis as demonstrated by various in vivo 
observations in both mice and humans. Athymic mice show peripheral 
granulocytopenia associated with an accumulation of immature he
matopoietic precursors in the BM [20] and T cells are required for 
successful engraftment of allogeneic stem cells in transplant recipients 
[21,22]. T-cell deficiency associated with severe combined immune 
deficiency (SCID) can be associated with variable degrees of cytopenia, 
although functional hematopoiesis in SCID patients suggests that diverse 
mechanisms can palliate for T cell deficiency [19,23]. The frequency of 
regulatory T cells (Tregs) is higher in the BM than in the blood or other 
lymphoid organs and BM Tregs contribute to normal hematopoiesis and 
engraftment capacity of allogeneic stem cells [10,24]. Finally, adaptive 
immunity participates in bone remodeling through regulation of the 

OPG-RANKL axis through BM B and T cells [19]. 
This review describes how these interactions in the BM may affect 

acute myeloid leukemia development and treatment. 

3. The bone marrow lymphoid environment in AML 

Acute myeloid leukemia (AML) results from the malignant trans
formation of hematopoietic myeloid precursors. Despite advances in 
first-line regimens and consolidation therapies, most AML patients 
relapse and subsequently die from the disease. AML is characterized by 
molecular and cytogenetic inter-individual heterogeneity, as illustrated 
by the 2017 European Leukemia-Net (ELN) classification [25], but also 
within individual patients due to clonal evolution and variable differ
entiation states [26]. BM sampling performed at diagnosis and after 
treatment focuses on blasts almost exclusively and overlooks the im
mune cells [27,28]. However, accumulating evidence suggest that het
erogeneity in the immune environment and its interaction with AML 
blasts contribute to the variable outcomes and response to therapy. 
Hence, immune-related features should also be considered in AML 
classification, response evaluation and prognosis. 

3.1. Characterization of immune cells in AML 

3.1.1. Conventional T cells 
The characteristics of the blood and BM lymphoid compartments of 

AML patients is a matter of debate, with salient findings from several 
studies described in Table 1 [2,29–31]. Several groups found that pe
ripheral blood (PB) T-cell counts (especially CD8) were higher in AML 
patients relative to healthy patients, but returned to normal after in
duction chemotherapy and achievement of a complete response [29,32]. 
Using multiplexed immunohistochemistry, Brück et al. studied the AML 
BM immunologic niche at diagnosis and found that compared to control 
BM and to other leukemias, AML BM contained decreased lymphocyte 

Fig. 1. Immunosuppressive bone marrow immune environment of acute myeloid leukemia at diagnosis. 
The main cells and molecules are represented with their mutual interactions. Cytotoxic lymphocytes with anti-leukemic activity (left panel) are decreased in number 
and display exhaustion markers while suppressive cells (right panel) are highly functional resulting in a global immunosuppressive milieu. AML: acute myeloid 
leukemia, NK: natural killer, T-reg: regulatory T cells, MDSC: myeloid-derived suppressive cell, MSC: mesenchymal stem cell, MHC: major histocompatibility 
complex, IL: interleukin. Illustrations made with ScienceSlide® Suite 2010 edition. The full lines represent a production or secretion of a cytokine, and the full line 
with a bar indicates a suppressive effect. 
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populations, including T cells, B cells, NK cells and NK T cells. In the 
same study, BM aspirates and paired peripheral blood (PB) AML samples 
at diagnosis were characterized by flow cytometry in 8 patients. The 
study was limited to NK and CD8 T cells and showed a more differen
tiated “effector memory cell” status in the BM as compared to PB. 
Interestingly these differences were more pronounced in AML samples, 
than in healthy controls, suggesting that AML enhances the effector 
differentiation of BM T cells [27]. Another study reported a decreased T 
cell infiltrate in AML BM [33], but another showed no difference in T cell 
BM frequency after adjusting for cellularity [34]. Such discrepancies 
might be related to the varied approaches (single cell RNA sequencing, 
flow cytometry, immunohistochemistry) and samples (aspirates vs core 
biopsies) used by the different investigators to assess T-cell infiltration. 

AML cells and the host immune system are interacting at multiple 
levels (Fig. 1) [35]. AML cells are associated with an immunosuppressive 
microenvironment with reductions in population and/or function of T 
and NK cells and accumulation of T-regs, and immunoregulatory 
myeloid cells which may protect leukemic stem cells and predispose to 
relapse. The AML blasts themselves display immune evasion mecha
nisms including reduced expression of major histocompatibility complex 
(MHC) molecules, enhanced expression of inhibitory ligands such as 
Tim-3, Gal9 and PD-L1, and reduced expression of NKG2L and DNAM-1 
on the blast surface leading to impaired NK cell activation [2,3]. These 
suppressive effects of AML cells on lymphocytes can be recapitulated in 
vitro by co-incubation of AML blasts with healthy NK or T cells, which 
results in impaired cytotoxicity and antigen-driven proliferation [36]. In 
addition, T cells from AML patients display aberrant activation profiles 
as well as phenotypic and transcriptional features of exhaustion (co- 
expression of multiple immune checkpoint molecules) terminal effector 
differentiation and/or senescence, further compromising an effective 
endogenous immune response against AML [37–41]. However, these 
findings do not appear to be specific for AML but consistent across he
matological malignancies [42]. At diagnosis CD4 T cells of AML patients 
were shown to produce less interferon(IFN)γ upon stimulation as 
compared to healthy controls [43]. Circulating AML T cells also showed 
decreased expression of genes involved in immune synapses [29] and 
single cell RNA sequencing revealed T cell suppression signatures [33]. 
By immunohistochemistry, BM T cells of AML patients displayed less 
cytolytic and co-stimulation markers. In terms of immune checkpoint 
receptors, PD1 expression in T cells of AML patients exceeded expression 
in control subjects, while the contrary was observed for LAG3 and TIM3 
[27]. However, another study identified co-expressing PD-1 and TIM-3 
on CD8+ T cells in AML patient suggesting a high degree of T-cell 
exhaustion [44,45]. Increased inhibitory checkpoint molecule or 

exhaustion-associated transcription factor expression is consistently 
found in AML BM T cells. Studies suggest this expression pattern at 
diagnosis is attenuated upon response to chemotherapy, as shown for 
PD1 and Tim-3 [41,44] but more pronounced in progressive or relapsed 
patients. For example, PD1 and CD244 T cell expression was increased at 
relapse post HSCT in one study [46]. However, it is unclear whether this 
reflects T-cell exhaustion or a population shift to differentiated effector 
T cells [2,46–48]. Nevertheless, as presented in Table 2, most studies 
point to lymphocyte dysfunction (encompassing states such as exhaus
tion, terminal differentiation and senescence [47,49]) as a feature of the 
AML immune environment with potential prognostic and therapeutic 
consequences that will be developed in Sections 2.2 and 3 [2,50]. 

3.1.2. Regulatory T cells 
Regulatory T cells (Treg) prevent excessive immune responses 

through various mechanims. Elevated T-regs are consistently docu
mented across studies in the PB and for some of these reports in the BM 
of AML patients [2,33,34,40]. In a large study of 182 patients, Shenghui 
et al. describe an elevated T-reg frequency in the PB and even more 
pronounced in the BM of newly diagnosed AML patients as compared 
with healthy volunteers [51]. Moreover, suppression assay using ex vivo 
isolated Treg showed higher suppressive activity in AML patients. 
Interestingly, Treg frequency decreased upon achievement of complete 
remission and increased at relapse [2,51]. However, the clinical rele
vance of these findings and the exact role of Treg in the mechanism of 
AML development and relapse remains to be elucidated. 

3.1.3. Gamma-delta T cells 
Gamma-delta (γδ) T cells are unconventional T cells that are acti

vated through both MHC-independent and non-classical class-I MHC 
molecules-dependent interactions. Among these, γδ T cells subsets 
recognize lipids by the CD1 family of MHC class I-like proteins or MHC- 
related protein 1 (MR1) [52,53]. These T cells are present in the BM at 
variable frequencies and as such, are a component of the AML immune 
environment [32,54–56]. In a Canadian study of 33 AML patients 
compared with healthy volunteers, circulating γδ T cells tended to be 
lower at diagnosis in patients with high leukemic burden but nearly 
normalized after achievement of complete response. By contrast, a sharp 
increase of γδ T cells was noted at early relapse in another study, but the 
mechanisms underlying this phenomenon are unclear [56]. These 
findings underline the potential role of γδ T cells in leukemic immune 
surveillance [54]. In vitro evidence shows that γδ T cells can recognize 
and kill leukemia blasts, but their network of interactions with the tumor 
environment in vivo remains poorly understood [54,56]. Given the 

Table 1 
Lymphocyte populations.  

Main findings AML as compared to healthy controls Source sample 
type 

timing Sample size Method reference 

↑absolute number of T cells (↓ relative numbers) 
↓CD4/CD8 ratio 
↑CD3 + CD56+ cells with cytotoxic and activated phenotype 
(CD57+ CD28- CD25 + CD69+) 

PB PBMC Diagnosis 36 (17 
controls) 

Flow [29] 

↑lymphocyte count, restored after chemotherapy 
↑ CD8 T cell at diagnosis 
↔ NK and γδ T cells at diagnosis 

PB PBMC Diagnosis and during 
treatment 

29 (15 
controls) 

Flow [32] 

↓T cells and CTLs BM aspirates Diagnosis and during 
treatment 

16 (5 
controls) 

Single cell RNA 
sequencing 

[33] 

↓T cells and CTLs, ↓CTL:T cell ratio 
↑T-regs 

BM Trephine Diagnosis 15 (15 
controls) 

IHC [33] 

↔T cell infiltration on biopsies in AML versus controls BM Trephine Diagnosis 13 (14 
controls) 

IHC [34] 

↔absolute T cell numbers PB Whole 
blood 

Diagnosis 13 (8 
controls) 

Flow [30] 

Overview of the main studies quantifying T cells in AML patients. 
Abbreviations: PB: peripheral blood; BM: bone marrow; PBMC: peripheral blood mononuclear cells; IHC: immunohistochemistry; Flow: flowcytometry; CTLs: cytotoxic 
lymphocytes. Arrows refer to increase (↑), decrease (↓) or unmodified (↔) in AML as compared to healthy controls or otherwise specified comparison. 
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sensitivity of leukemic blasts to γδ T cells and the propensity of these 
cells to recognize non canonical antigens, γδ T cells are candidates for 
cellular immunotherapy, especially in allogeneic transplantation where 
they are associated with a potent GVL effect without increase in GVHD 
[57,58]. Accordingly, a higher frequency of γδ T cells in peripheral 
blood at day 56 post-transplant has been associated with better HSCT 
outcomes [58]. The exact role of different γδ T-cell subtypes in AML has 
yet to be established. 

3.1.4. NK cells 
NK cells are innate cytotoxic lymphocytes exerting direct and indi

rect cytotoxic effects on cells displaying distress signals and constitute 2 
to 4% of the BM lymphocytes. A historical study of PB and BM 
lymphocyte subsets in AML suggested that relative and absolute 
numbers of BM NK cells were increased in AML as compared to healthy 
controls and enriched in the CD16-negative, more immature, NK cell 
fraction [59]. By contrast, a more recent study showed the accumulation 
of CD56-negative CD16-positive NK cells in the PB of AML patients [60]. 
NK cells exert cytotoxic activity against leukemic cells but display 
dysfunctional features in AML that appear to be directly induced by 
interactions with AML blasts [2,61]. These features include 

downregulation of activating receptors such as NKp46, upregulation of 
inhibitory receptors such as NKG2A, impaired cytokine production and 
degranulation. Interestingly, in a study of 29 patients, downregulation 
of the activating receptors NKp30 and NKp36 observed at diagnosis 
compared to healthy controls, was restored 6 weeks after induction 
chemotherapy [32], suggesting some of the dysfunctional features of 
AML NK cells are reversible. 

AML cells further evade NK cell suppression through synergistic 
mechanisms leading to impaired recognition by NK cells and direct 
suppression of NK cell functions [2,62–64]. These mechanisms include 
overexpression of CD137L and CD200, whose interaction with their 
respective receptors on the surface on NK cells leads to suppression of 
NK cell cytotoxicity and IFNγ production [65,66]. 

The close interactions between NK cells and blasts in the AML 
microenvironment can be modulated and as detailed below, NK cell- 
based immunotherapies are of considerable interest to treat this disease. 

Table 2 
Function, differentiation, exhaustion and senescence.  

Main findings AML as compared to controls or as indicated Source Sample type Timing Sample size Method Reference 

↑ relative numbers of CD3+ cells - ↑ Tregs 
↑ PD1- and OX40-positive T cells - ↑ ICOS-positive CD4 T 
cells 

BM Aspirate Diagnosis 107 (8 
controls) 

Flow [34] 

↑PD1, CD160, 2B4, Tim3, KLRG1, and CD57 
↑ terminally differentiated CD8 T cells at diagnosis 
Expression of inhibitory receptors decreased when 
achieving CR and increased in non-responders 
↑TNFα and IFNγ, ↓IL-2 expression 
↑senescence and exhaustion 
↓adhesion and migration (partially restored in responders) 

PB/ 
BM 

Aspirate Diagnosis 
Post induction 

72 (70 
controls) 

Flow 
Functional 
GEP 

[41] 

↓T, B, NK, NK T cells 
↓ GrB and CD57, CD27, LAG3 and TIM3 
↑PD1 ↔CTLA4 
Higher Treg % associated with poor prognosis 
CTLA4− LAG3− T-helper cells associated with longer 
survival 

BM Trephine diagnosis 69 (12 
controls) 

IHC/image analysis [27] 

Impaired T cell proliferation and cytokine production 
Proliferation rescued by adding CPI to the assay 

PB/ 
BM 

Aspirate diagnosis 49 (8 
controls) 

Flow, ICS, proliferation 
assay, CyTOF 

[37] 

↑terminally differentiated CD8 T cells 
↓CD127 and TCF-1 and ↑ TOX 
↑PD-1+TIGIT+CD73− CD8+ T cells 
↑CD39+ TIGIT+CD73− CD8+ T cells (normalized in 
remission) 

PB/ 
BM 

PBMC/aspirate Diagnosis, relapse or 
CR 

43 (12 PB 
controls) 

Flow [48] 

Relapse associated with higher LAG3 gene expression  

↓ Th1 cells and exhaustion markers associated to relapse 

BM aspirate Diagnosis 15 
41 

Single cell RNA 
sequencing 
Flow 

[74] 

↔CD244, PD-1, CD160, and TIM-3 
↑PD1 at relapse after allogeneic SCT 
↔proliferation and cytokine production 
(exception: ↓CD4 T cell IFNγ production at diagnosis) 

PB PBMC Diagnosis 
Relapse and post 
HSCT relapse 

23 (30 
controls) 
14 

Flow/ICS/Proliferation [46] 

↑CD244 T cell expression in AML as compared to controls 
↑ CD8 T cell CD244 expression at relapse post HSCT 
↑ T cell PD1 and Tim-3 expression at relapse post HSCT 
↑terminal effector memory differentiation at all time points 

BM aspirate Diagnosis 
Relapse and post 
HSCT relapse 

31 (5 
controls) 
13 

Flow [46] 

↓relative numbers of CD3+ cells - Absence of Tregs 
↑ LAG3 and PD1 
↓ IFNγ and TNFα, IL-2, IL-5 and IL-6 production 

PB PBMC Relapse post- 
transplant 

24 (9 
controls) 

Flow/ICS [43] 

Aberrant TCR signaling and T cell activation patterns 
Differential regulation of genes associated with 
cytoskeleton 

PB Sorted CD4 and 
CD8 T cells 

diagnosis 10 (10 
controls) 

GEP [29] 

↓ immunologic synapses of T cells with blasts PB T cells autologous 
blats 

diagnosis 10 (10 
controls) 

cell conjugation assay [29] 

↑PD1+ Tim-3+ CD3+ T cells in non-responding patients 
compared with CR 

PB/ 
BM 

PBMC/aspirate diagnosis 9 Flow [44] 

Overview of the main studies reporting T-cell dysfunction in AML patients. 
Abbreviations: PB: peripheral blood; BM: bone marrow; PBMC: peripheral blood mononuclear cells; CR: complete remission; HSCT: hematopoietic stem cell trans
plantation; ICS: intracytoplasmic staining; GEP: gene expression profile; Flow: flow cytometry. CPI: checkpoint inhibitor. Arrows refer to increase (↑), decrease (↓) or 
unmodified (↔) in AML as compared to healthy controls or otherwise specified comparison. 
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3.2. T cell infiltration and status correlate with outcome and response to 
treatment 

3.2.1. Quantification of the AML immune environment 
The magnitude of T cell infiltration as measured by flow cytometry in 

the BM at AML diagnosis has been associated with increased overall 
survival [40,67,68]. Also, multiplex immunohistochemistry at diagnosis 
identified AML-specific immune profiles that segregated with age and 
correlated with disease-free survival [27]. 

The immune contexture of cancers, as defined by the nature, the 
density, the functional orientation and the location of immune cells, is 
an established predictor of clinical outcome in several malignancies 
[69–72]. The Tumor Inflammation Signature (TIS) score results from the 
expression level of 18 immune-related genes reflecting the degree of 
adaptive immune response inside the tumor. The TIS score was mostly 
described in solid tumors with the aim of predicting response to 
immunotherapy. However, when applied to 163 AML marrow samples 
using a pan cancer genome atlas, it revealed that AML present an 
average low score, implying an overall corresponding limited sensitivity 
to immune interventions [73]. However, recent data point out important 
heterogeneity in the AML immune environment as developed in the next 
sub-sections. 

3.2.2. Immune contexture of AML contributes to prognostic classification 
AML risk classification is largely based on cytogenetic abnormalities 

[25]. In the case of AML with normal karyotype, ELN criteria are 
insufficient to explain the heterogeneity of outcomes. Among these AML 
cases, relapsing patients had lower CD4 Th1 cell infiltration in the BM 
and their T cells expressed an exhausted signature as compared with 
patients with long term remission. This suggests that the proportion of 
Th1-differentiated CD4 T cells at presentation is associated with unfa
vorable outcomes in AML patients treated with standard chemotherapy 
[74]. In another report, Vadakekolathu and colleagues identified two 
distinct immune profiles in AML using targeted immune gene expression 
profile of 290 BM samples [75]. Around 50% of the samples were 
identified as “immune-infiltrated” whereas the other half was “immune- 
depleted” [2,75–77]. AML cases with immune-infiltrated profiles had 
higher transcript levels of IFNγ-stimulated genes, T cell recruiting fac
tors (STAT1, CXCL10, and IRF1), T cell markers and cytolytic effector 
molecules (CD8A, CD8B, GZMB, and PRF1), counter-regulatory immune 
checkpoints and immunotherapy drug targets (IDO1, CTLA4, PD-L1, and 
BTLA), as well as molecules involved in antigen processing and pre
sentation (TAP1, TAP2, HLA-A, HLA-B, and HLA-C) [75]. Expression of 
STAT1, a key component of the IFNγ signaling pathway, was more 
strongly correlated with the presence of T cell inhibitory receptors such 
as Tim-3 and LAG-3 and with IFNγ-stimulated genes in the immune- 
infiltrated relative to the immune-depleted subtype [75]. Together 
these gene expression data are indirect signs of an IFNγ-driven adaptive 
immune response taking place in the inflamed BM immune environment 
of the immune-infiltrated subtype. In the same study, authors could 
identify T-cell rich regions with CD3-positive cells co-localizing with 
cells expressing proteins involved in antigen presentation and process
ing in immune-infiltrated samples. In immune-depleted samples, CD3- 
positive cells expressed memory (CD45RO) and exhaustion (PD-1) 
markers [75]. Further analysis of the same dataset identified PD-L1, 
FOXP3, PTEN and BCL2 as gene markers of the immune-infiltrated BM 
samples and correlated with TP53 mutation status and with adverse ELN 
cytogenetic features. Interestingly, in this cohort of 290 patients, the 
presence of an immune infiltrate was associated with a better prognosis 
for patients with favorable risk, whereas it correlated with worse 
prognosis for patients with adverse ELN cytogenetic risk [75]. Alto
gether, these data identify BM immune gene signature in AML as an 
important prognostic factor with distinct effects depending on genetic 
classification [75]. In a separate study, immunogenomics were also used 
to build a “cytolytic score” of hematological malignancies based on the 
expression of genes directly involved in T/NK-cell mediated cytotoxicity 

such as GZMA, GZMM, GZMH, PRF1 and GNLY. This score was generally 
low for AML as compared to other diseases such as lymphoma but 
among AML samples, the cytolytic score correlated with TP53 mutation, 
myelodysplasia-related changes and associated cytogenetic abnormal
ities. In contrast, the common AML driver mutations FLT3 and NPM1 
preferentially occurred in samples with low cytolytic activity [78]. 
Altogether these studies suggest that together with genetic markers, 
immune contexture heterogeneity contributes to AML prognostic 
classification. 

3.2.3. T cell dysfunction markers correlate with AML outcome 
T cell dysfunction markers described in Section 2.1.1 can have a 

prognostic significance. Sallmann et al. showed an impact of immune 
checkpoint dysregulation on overall survival in AML that was more 
marked in TP53-mutated patients. For TP53-mutated AML, the BM 
environment was possibly immunosuppressive with a high proportion of 
ICOShighPD1low T-regs and reduced expression of co-stimulatory mole
cules such as OX40, a marker of T cell activation, by conventional T cells 
[79]. Other groups showed an impact of the degree of immune sup
pression in the immune environment on AML outcome and response to 
treatment. In a murine model, the co-expression of the exhaustion 
markers PD1 and Tim-3 on CD8 T cells was associated with defective T 
cell effector function and AML progression [45]. In a large AML cohort 
from MD Anderson, PD1 and OX40 BM expression was higher in AML 
patients as compared to healthy donors. PD1- and TIM3- and to a lesser 
extent PD1- and LAG3- double-positive T cells showed a bimodal dis
tribution in BM samples from different patients. These exhausted T cells 
were found in a higher proportion in newly diagnosed AML patients than 
in age-matched healthy volunteers and were even higher at relapse 
(Table 2 and [34]). Altogether these results suggest that heterogeneity of 
T cell functional status may contribute to heterogenous outcome in AML. 

In conclusion, evidence presented in Section 2 and summarized in 
Fig. 2, suggest that heterogeneity in the BM immune infiltration con
tributes to the variability of AML clinical outcome and could predict 
response to treatment. In Section 3 we will review how the immune 
status of the BM environment can help identify patients who could 
benefit from immune-based therapies. 

4. Impact of bone marrow environment on lymphocyte- 
mediated immunotherapy 

The GVL effect has long been established as potentially curative in 
AML [80]. However, no non-transplant T cell-mediated immunothera
peutic strategies has been incorporated in clinical practice [81]. The 
barriers to the development of immunotherapy in AML include the 
heterogeneous interactions between blasts and AML cells characterized 
by variable degree of immune suppressive environment and immune 
evasion by AML blasts [2,36,40]. Addressing this issue has become 
critical and, as such, was the topic of several recent reviews 
[2,3,36,81–83]. The wider availability of genome-wide sequencing 
technologies, is allowing for a more comprehensive assessment of the 
genetic determinants of the immune environment such as the TP53 
mutation status, and could help predict the likelihood of response to 
immunotherapy through accurate AML immune subtyping [75,76,84]. 

4.1. Immune Checkpoint inhibition 

Immune checkpoint inhibition (CPI) is now extensively used in 
oncology as a mean to reinvigorate exhausted antigen-experienced T 
cells [85,86]. As highlighted above, several immune checkpoints (and 
their ligands) are expressed in the context of AML, providing a strong 
rationale for CPI in this disease [87]. The different CPI that were tested 
for AML treatment include antibodies against PD-1, PDL-1, CTLA4 and 
more recently novel agents targeting Tim-3, the leukocyte 
immunoglobulin-like receptor B4 (LILRB4), CD47, CD70 or CD200 
[84,88]. The targeting of NK cell inhibitory receptors such as NKG2A is 
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also a potential strategy for AML treatment [89,90]. Unfortunately, 
many single arm phase I/II trials have failed to show any clinically 
relevant efficacy and when they have, real world practice has been 
disappointing [2,82,91,92]. One of the only randomized trials in the 
field compared the combination of azacitidine (AZA) with the anti-PD- 
L1 antibody durvalumab with azacitidine monotherapy in 129 AML 
patients and didn't show clinically meaningful benefits for the combi
nation [93]. From a mechanistic point of view, the combinations with 
hypomethylating agents (HMA) could be more effective than CPI alone 
because HMA are known to increase PD-L1 expression on myeloid cells 
and are believed to increase the immunogenicity of AML blasts through 
antigenic expression [94,95]. However, 5-azacitidine may impair 
effector T-cell differentiation and function [96]. In the above-mentioned 
randomized study, azacitidine induced overexpression of PD-L1 in 
healthy myeloid cells but not in leukemic blasts. Because the expression 
of checkpoints is highly variable in time and between patients, CPI may 
work differentially in subgroups of AML patients [84]. In an attempt to 
identify these subgroups, recent studies report biomarkers predictive of 
response to CPI in AML. These markers include the frequency and 
phenotype of BM CD8 T cells [97–99], higher polyfunctionality and Th1- 
polarized BM CD4 T cells, as elegantly shown using single cell functional 
proteomic profiling [100]. TP53 mutation has been associated with a 
slight increase in PDL1 expression in precursor cells, which could 
possibly lead to higher sensitivity to CPI according to a study on 30 
TP53-mutated AML compared with 73 controls [79], whereas loss of 
chromosome 7/7q was associated with resistance to CPI in a smaller 
cohort of 8 patients [98]. The negative results obtained with CPI in 
immunologically uncharacterized AML does not rule out that subgroups 
of AML patients, selected based on pre-treatment immune markers, 
could benefit from CPI-based combinations [101]. 

4.2. T cell recruiting antibodies 

Bispecific antibodies are recombinant proteins that recruit T cells in a 
TCR-independent manner, through direct CD3 engagement after bind
ing of a surface antigen expressed by tumor cells [102]. Following the 
approval of the CD19-directed blinatumomab for the treatment of B- 
acute lymphoblastic leukemia, a large variety of antibody constructs and 
molecular forms are currently being studied in different hematological 
malignancies [102,103]. In the case of AML, the issue is to identify 
suitable targets [49,102]. Myeloid lineage-restricted surface antigens 
such as CD33 and CD123 are expressed by leukemic blasts and healthy 
hematopoietic cells, and leukemia-associated antigens such as WT1 are 
overexpressed by AML cells but also detected on healthy tissues, causing 
potential on-target off- tumor toxicities [49,102]. Bispecific antibodies 
against CD33, CD123, FLT3, WT1 and CLL1 are currently being studied 
in phase I/II clinical trials [102,104,105]. 

The status of T cell BM environment is highly relevant for the design 
of bispecific antibody-based therapies for AML, as “immune-infiltrated” 
and “immune-depleted” subtypes show differential response [75]. Flo
tetuzumab (MGD006), an investigational bispecific antibody-based 
molecule to CD3 and CD123 was tested in a phase I/II clinical trial on 
88 relapse/refractory AML patients [103,106]. Although the overall 
response rate in the total cohort was modest (13,6%), the authors 
identified a subgroup with better response. This subgroup included 
primary induction failure and early relapse patients that preferentially 
had an immune-infiltrated marrow environment. Dissecting immune- 
related gene expression data, the investigators showed that the com
plete response rate was up to 60% in the patients with the highest im
mune infiltration. The ranking of gene expression data allowed the 
identification of a 10 gene signature predictive of response. The signa
ture included IFNγ-driven inflammation, components of the TIS score 
and other T cell-associated pathways. Strikingly this signature could 
statistically better predict response to flotetuzumab than the ELN risk 

Fig. 2. Immune stratification of acute 
myeloid leukemia. 
Next to conventional validated molecular 
and cytogenetic features of the AML blasts 
(upper panel), the characteristics of the im
mune environment (middle panel) may have 
a prognostic role, potentially impacting the 
choice of immunotherapeutic strategies. 
Most AML patients have an immune- 
depleted bone marrow with low cytolytic 
activity. However, subgroups of patients 
display an immune-infiltrated bone marrow 
with IFNγ-driven inflammation and T cell 
exhaustion. Emerging data suggest these 
features correlate with the presence of 
adverse cytogenetic and molecular features 
and could be better candidates for therapies 
aiming at reverting the immune suppressive 
environment. The color gradients reflect the 
heterogeneity in indicated parameters. Il
lustrations made with ScienceSlide® Suite 
2010 edition.   
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category [106]. In a comparison of post-cycle 1 BM samples to baseline 
samples, exposure to flotetuzumab resulted in increased immune cell 
infiltrate and immune activation scores. This suggests that treatment 
with bispecific antibodies could not only eradicate blasts but also shift 
the microenvironment to a more inflamed type [107]. In line with this 
finding, AMG330, an anti-CD33 bispecific antibody, could elicit robust 
cytotoxic responses against AML cells even when used on exhausted BM 
T cells [108] and the number of endogenous T cells correlates with drug- 
induced cytotoxicity in vitro [109]. The efficacy and mechanism of ac
tion of these drugs requires further study but these preliminary obser
vations highlight once again the need to include immune environment 
markers in interventional AML immunotherapy clinical trials. 

4.3. Adoptive T cell therapy 

Different forms of adoptive T cell therapy have been and are 
currently being tested for the treatment of AML as recently reviewed 
[83,89,102,110,111]. By adoptive T cell therapy, we mean the use of 
autologous or allogeneic T cells, transferred to patients, that target 
leukemic cells and which can induce their apoptosis through direct and 
indirect cytotoxic mechanisms. As mentioned for T-cell recruiting anti
bodies, the major difference with CD19-expressing malignancies is the 
lack of an obvious adequate antigenic target in AML. To address this 
unmet need, the Sadelain group integrated protein and RNA expression 
profiles of AML cells with an algorithm designed to detect ideal CAR- 
targets. This method identified promising combinatorial pairings such 
as CD33 + ADGRE2, that was present in more than 97% of cells in AML 
samples with non-overlapping expression in normal tissues [112]. The 
other limitation in the development of effective T cell therapy for the 
treatment of AML is the presence, in a significant proportion of patients, 
of an immunosuppressive microenvironment that could dampen the 
antitumor activity of adoptive T cells [113]. 

In the context of allogeneic stem cell transplantation, the use of in 
vitro generated leukemia-specific donor T cells could enhance the GVL 
effect without triggering GVHD [110,114]. With the same objective, 
Chapuis et al. studied the prophylactic infusion of T cells expressing a 
high affinity WT1-specific TCR with encouraging results in a 12 patient- 
cohort [115]. Another promising approach, again following HSCT is the 
use of cytokine-induced killer (CIK) cells, which are activated T-cells 
that acquire NK-cell-like cytotoxicity after culture with cytokines 
[83,110]. 

Chimeric antigen receptor (CAR)-T cells are genetically engineered 
to express a variable heavy and light immunoglobulin chain coupled 
with intracellular stimulation and co-stimulation machinery. The CAR 
binds malignant cell surface antigens with high specificity indepen
dently of MHC. Based on encouraging preclinical data [116], CD33- and 
CD123-directed CAR-T cells have been clinically tested, so far with 
disappointing results. Further, both CD33 and CD123 are expressed on 
normal hematopoietic cells potentially resulting in unacceptable mye
losuppression. An elegant strategy to avoid these shortcomings and 
applicable to CD33 targeting is to engineer CD33-deficient allogeneic 
stem cells and infuse them along anti-CD33 CAR T-cells that will 
recognize and eliminate CD33-positive blasts but not the CD33-negative 
donor stem cells [117]. CAR T cells targeting FLT3, CD117 and LeY as 
well as the recently identified Siglec 6 [118] could be more promising as 
these markers are unique to or more prominent on AML cells. Finally, 
multi-target and dual anti-CD33/CD123 CAR T cells are under clinical 
investigation [83,110]. A recent report from the Zeiser group illustrates 
the interaction of cellular therapy with the immune microenvironment 
[119]. In this xenograft AML model, the authors infused an anti-CD123 
CAR-T construct with potent anti-leukemic effect in vitro and in vivo 
without excessive myelotoxicity. Furthermore, the combination of this 
anti-CD123 CAR T cell with azacitidine resulted in increased expression 
of the target CD123 on leukemic blasts and increased anti-CD123 CAR T 
cell function. Interestingly, the CAR population was enriched in CTLA4- 
negative CD4 CAR T cells which exhibited stronger anti-leukemic and 

memory properties than their CTLA4-positive counterparts. Interest
ingly, 28 days post infusion, this CTLA4-negative T-cell population was 
enriched in the BM and not in the PB in one of the murine models. 
Higher numbers of CTLA4-negative CD4 and CD8 T cells were also found 
in the PB and BM of mice treated with azacitidine and anti-CD123 CAR T 
cells as compared with the CAR-T cell monotherapy group. These ob
servations suggest a modulatory effect of the combination AZA/CAR on 
the immune environment of AML [119]. Other ways to overcome im
mune dysfunction and enhance adoptive T cell therapy were recently 
reviewed by our group and others [47,113,120,121]. Clinical translation 
of this approach is eagerly awaited and should include investigations on 
immune environment markers. 

4.4. NK cell-based immunotherapy 

The interactions between NK cell receptors (activating and inhibi
tory) and corresponding ligands on target cells determine whether the 
NK cells will effectively kill neoplastic or infected cells. In this context, 
AML blasts may be more susceptible to NK cell mediated killing than 
other cancers since they express ligands that are more recognized by 
activating, rather than inhibitory receptors on NK cells [122]. This 
property is the basis of the well-known NK-mediated GVL effect that 
contributes to the curative effect of HSCT, best demonstrated in HLA- 
mismatched transplants where inhibitory killer immunoglobulin-like 
receptors (KIR) cannot interact with self MHC [123]. However, AML 
cells display mechanisms to evade NK cell recognition, such as down
regulation of ligands for the activating receptor NKG2D [122]. In a 
phase I study on 13 patients, post-haploidentical stem cell trans
plantation ex vivo expanded donor NK cell infusion improved NK cell 
function and was associated with a low relapse rate and incidence of 
viral infections without severe GVHD, and without significant impact on 
T cell immune reconstitution [124]. In another small trial on 10 patients 
with advanced myeloid malignancies, post-transplant CD56+ enriched 
donor cell infusion was associated with an early and rapid rise of mature 
NK cells as well as CD4 T cells and T-regs [125]. NK cells can also be 
infused pre-transplant with the objective of increasing GVL effects 
[126]. 

The cytotoxic activity of autologous NK cells is dampened by KIR/ 
self MHCI interactions. Therefore allogeneic KIR-mismatched NK cells 
are preferred for most applications, even in non-transplantation settings 
[89,127,128]. Nevertheless, autologous NK cells can be recruited and 
engaged through antibody constructs similar to T cell-engaging bispe
cific antibodies. As an example of development in this very dynamic 
field, the University of Minnesota recently reported encouraging pre
clinical data on the use of a trispecific killer engager (TriKE) combining 
an anti-CD16 antibody, an IL-15 molecule to support the CD16-positive 
NK cell and an anti-CLEC12A to target the leukemic cells [129]. The 
anti-tumor activity and persistence of adoptively transferred NK cells 
can be optimized through ex vivo expansion in specific cytokine condi
tions, that mostly include IL-15 or genetic modification to enable 
autocrine IL-15 secretion [130]. Combination strategies with epigenetic 
modulators, checkpoint inhibition or even donor lymphocyte infusion in 
the post-transplant setting are other investigated options [127,131,132]. 
The validity of adoptive NK cell transfer for the treatment of AML has 
been demonstrated [133] and many trials are ongoing in this rapidly 
evolving field [83,89,110,122,127]. 

Finally, CAR-NK cells have also been developed for targeting AML 
antigens such as CD33, CD123, CD7 and CD4. CAR-NK cells combine 
intrinsic and engineered anti-tumor features that could overcome some 
of the obstacles to AML immunotherapy related to antigen escape and 
heterogeneous gene expression as demonstrated in vitro and in vivo by 
the Rezvani group and others [122,131]. CAR-NK cells can be generated 
from allogeneic donors or from cell lines, with the advantage of off-the- 
shelf availability [89]. Unsurprisingly, the AML immune environment 
also poses obstacles to successful CAR-NK cell therapy [131]. The ob
stacles include the presence of immunosuppressive soluble factors such 
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as TGF-β which can adversely affect NK cell function [122,134]. Cir
cumventing such factor through genetic engineering of CAR-NK cells is a 
focus of research for several groups [122]. One proposed approach has 
been to use the CRISPR-Cas9 gene-editing technology to delete the TGF- 
β receptor 2 gene (TGFBR2) in NK cells, which renders them resistant to 
this immunosuppressive cytokine [122]. 

In conclusion, immune-based therapies could be a valid option for 
selected AML patients. However, challenges such as the cost, availability 
and toxicity of these therapies currently limit their use and are the object 
of intensive research efforts. Among recent advances that may lead to 
better targeted and safer therapies are the refinements in CAR T-cell 
design [112], introduction of fate-regulating transgenes to rapidly 
curtail toxicity [135] and transgenic TCR technologies [115,136]. Such 
therapies will nevertheless, have to compose with the BM immune 
environment features that have an impact on lymphocyte-based cellular 
therapy for AML and conversely, cellular therapy may modulate the 
immune status of AML patients. Therefore, one could suggest that the 
assessment of the immune environment should be an integral part of cell 
therapy clinical trials. 

The place of immune-based therapies in the AML therapeutic arsenal 
also remains to be defined. Because refractory disease and post-HSCT 
relapse are the biggest unmet medical needs, and given their specific 
immune contexture, we argue that these settings should be explored in 
priority. However, low burden disease states such as the immediate post 
HSCT period or MRD after chemotherapy might be optimal settings to 
test immune based interventions given the relative small number of 
leukemia blast to target and yet to be defined changes that may occur in 
the AML microenvironment following therapy. In Section 4 we will re
view how AML immune environment impacts allogeneic stem cell 
transplant strategies. 

5. Impact of immune microenvironment on transplant outcomes 

Allogeneic hematopoietic stem cell transplant (HSCT) is established 
as a curative therapy for intermediate and high-risk AML [25,137,138]. 
This strategy is based on the efficacy of a GVL effect that is primarily 
mediated by donor-derived T and NK cells [80,123]. AML is the leading 
indication for HSCT worldwide [139], yet disease relapse remains a 
major cause of treatment failure and progress is needed in terms of pa
tient and donor selection, conditioning regimen and post-transplant 
maintenance therapy [137]. 

The AML immune environment is relevant for the optimization of 
pre-transplant management, for adequate immune reconstitution and in 
the relapse setting. 

5.1. Optimization of pre-transplant risk stratification and pre-transplant 
management 

The 2017 ELN classification stratifies AML in three risk categories 
based on cytogenetic and molecular characteristics [25]. Since its pub
lication, this classification has been validated and refined with the use of 
next generation sequencing (NGS) technology [140,141]. Measurable 
residual disease (MRD) is also recognized as a major predictive factor of 
relapse in AML, and post HSCT [142,143]. 

Currently, pre-transplant immune environment features are not 
included in the routine pre-transplant workup and decisional process. 
Knaus et al. demonstrated that response to induction chemotherapy 
correlated with the restoration of the altered T cell function present at 
AML diagnosis. In contrast, non-responders displayed an increased fre
quency of senescent T cells and upregulated exhaustion markers such as 
PD-1 and Tim3 in PB and BM [41]. It is plausible that similar observa
tions can be made when comparing T cell status of AML patients who 
achieve negative MRD with patients for whom MRD remains detectable 
which offers a rationale to use immunotherapy to achieve a deeper 
negative MRD status and improve subsequent transplant outcomes 
[142]. 

Finally, the T cell composition of the graft impacts outcome. In a 
multivariate analysis of 147 haploidentical transplantations, an optimal 
CD4:CD8 ratio close to 1 was associated with the best transplant 
outcome [144]. The absolute number of T cells in the infused product is 
a simple but surprisingly underused parameter and could be developed 
further for more personalized transplant strategies [145]. Successful 
engraftment and effective GVL require a minimal number of donor T 
cells. However, donor T cell depletion is required to avoid severe GVHD 
and can be achieved through in vitro graft engineering, or by the in vivo 
depletion of T cell replete grafts using pre-transplant anti-thymocyte 
globulin (ATG) or post-transplant cyclophosphamide (PTcy). Accord
ingly, the optimal dose and timing of ATG administered as GVHD pro
phylaxis depends on body weight, but also on lymphocyte count; 
excessive or insufficient exposure to ATG negatively impacts transplant 
outcomes [146]. 

5.2. Immune reconstitution as a major determinant of transplant outcome 

Immune reconstitution is a major determinant of transplant out
comes, but has mostly been studied in the peripheral blood [147]. The 
GVL effect enables donor immune cells to eliminate host leukemic cells 
by engaging a multicellular response including T cells, NK cells and 
antigen-presenting cells to overcome the multiple immunosuppressive 
mechanisms and clonal heterogeneity observed in AML [2]. Timely and 
appropriate immune reconstitution ensures persistent GVL activity and 
prevents infectious complications, while mitigating GVHD risk 
[147,148]. 

5.2.1. Conventional T cells 
In the early post-transplant period, expansion of donor T cells results 

from antigen priming of alloreactive T cells and from cytokine-driven 
proliferation in the lymphodepleted host. This phase is followed by 
thymic production of naïve T cells after differentiation of donor stem 
cells. CD4 T cells recover slower than CD8 T cells and rely more on de 
novo thymic differentiation from lymphoid precursors generated in the 
BM. Reaching normal CD4 T cell counts can take up to 2 years 
[148,149]. A robust and timely CD4 and CD8 T cell recovery is an 
important predictive marker of post-transplant survival across HSCT 
platforms [150–152]. Accordingly, timely achievement of full donor T 
cell chimerism is predictive of post-transplant survival [153]. In addi
tion, the re-acquisition of a broad polyclonal T cell repertoire is asso
ciated with better transplant outcomes [154,155]. Finally, intrinsic 
properties of donor T cells such as polymorphisms in the CTLA4 gene 
could modulate GVHD and overall survival, as suggested by a recent 
meta-analysis [156]. 

Thymic recovery is associated with robust immune reconstitution 
and lower opportunistic infections [157]. Age-related impaired thymus 
activity contributes to the well-known inferior outcomes of HSCT in the 
elderly [158]. Ageing also impacts post HSCT BM microenvironment. 
On one hand, hematopoietic stem cells from older donors are intrinsi
cally altered through several mechanisms leading to reduced lymphoid 
progenitors generation [149,158,159], while on the other hand, changes 
in the BM stromal environment of the elderly contributes to defective 
lymphopoiesis. Strikingly, transplantation of old stem cells in a young 
microenvironment is sufficient to partially reverse these age-related 
defects [149,158,160]. Conversely, the transfer of expanded young 
(cord blood) progenitors with high lymphoid potential may improve 
thymic output [157]. Normal ageing is also associated with mutation- 
driven acquired clonal hematopoiesis (CH) [161]. Interestingly, the 
presence of donor CH impacts transplant outcomes through mechanisms 
that include immune modulation [162]. The presence of DNMT3A 
mutation was associated with improved progression free survival, 
reduced relapse and increased chronic GVHD, possibly due to a positive 
effect on Th1 polarization and IFNγ production by CD4 T cells 
[163,164]. 

Although massively disrupted by the conditioning regimen and 
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concomitant procedures [165], BM has a major role in post HSCT im
mune reconstitution. Post HSCT BM hosts donor memory T cells and 
supports their homeostatic expansion. The BM contains residual hosts 
antigen presenting cells (APCs) which present allo-antigens to donor T 
cells. The BM further ensures efficient donor hematopoiesis and differ
entiation of donor lymphoid progenitors [166]. An inflammatory IFNγ- 
rich BM plasma has been associated with primary graft failure, sug
gesting an impact of BM environment on early engraftment and hema
topoiesis [167]. In the context of GVHD, IFNγ produced by donor T cells 
inhibits stem cell proliferation and induces lymphocyte apoptosis [168]. 
The BM is also affected by post-transplant immune insults such as GVHD 
and subsequent inflammation, infections and immunosuppressive ther
apy. Moreover, BM stromal niche, just as other organs, is a target of 
alloreactivity and “marrow GVHD” leads to impaired hematopoiesis and 
delayed immune reconstitution [169]. 

Evidence of a strong impact of T cell composition of post-transplant 
BM was recently published in the setting of autologous stem cell trans
plant (ASCT) for multiple myeloma. The authors identified a group with 
a specificpattern of post ASCT BM immune reconstitution, characterized 
by higher levels of naive and terminally differentiated T cells, some of 
which were expressing markers of T-cell exhaustion. This group had a 
significant inferior overall survival and time to myeloma progression as 
compared with the patients that did not display these markers[170]. To 
our knowledge, similar information is lacking in the context of HSCT for 
AML but we review existing data in Section 4.3. 

5.2.2. NK cells 
NK cells reconstitute early post-HSCT and their recovery is associ

ated with clinical outcomes and protection against relapse 
[144,171–173]. Furthermore, the dose of NK cells in the infused graft 
product correlates with relapse-free survival [171]. Accordingly, T- 
depleted haploidentical SCT historically lead to better survival in case of 
KIR mismatch in the graft versus host direction [123] though this 
concept is currently challenged with the broad use of post-transplant 
cyclophosphamide as GVHD prophylaxis [175]. However, even in the 
context of T cell-replete transplant platforms, NK cell alloreactivity can 
be relevant. For example, a study on cord blood transplant for AML 
showed an association between a specific KIR-HLA combination and 
lower relapse indicating NK-mediated modulation of alloreactivity 
[176]. Altogether these data indicate that NK cells contribute to the GVL 
effect. This is illustrated by the success of allogeneic NK cell therapy and 
harnessing NK cell alloreactivity is an important tool for preventing and 
treating post-transplant relapse [89]. 

5.2.3. Other immune cells 
An immunomodulatory and prognostic role in the setting of HSCT 

has also been attributed to γδ-T cells [57,58], invariant natural killer T 
cells [177], myeloid-derived suppressor cells [177], Treg 
[148,178–183] and neutrophils [184]. Post-transplant BM B cell quan
tification has been associated with frequency and severity of GVHD; 
patients with GVHD having decreased lymphopoiesis [148,185]. In 
addition, elevated numbers of immature B cells were found in PB of 
patients with severe infections and active chronic GVHD [148,186]. 
Such delayed B cell recovery leads to increased infectious complications 
and impaired response to vaccines post HSCT [187]. 

Although mainly based on analyses performed on PB, the associa
tions between immune reconstitution and transplant outcome highlight 
the importance of the complex post-transplant immune environment. In 
Sections 4.3 and 4.4 we will review the interplay between immune 
environment and AML relapse. 

5.3. Immune escape and environment at relapse 

Recurrence of the initial disease remains the main cause of HSCT 
failure. AML blasts evade the immune system through different mech
anisms [188]. These include abrogation of leukemia cell recognition due 

to loss of HLA genes, T cell exhaustion, production of anti-inflammatory 
factors, loss of proinflammatory cytokine production, and acquisition of 
novel driver mutations that promote leukemia outgrowth [188,189]. 
Exome sequencing of 15 paired BM samples at diagnosis of AML and at 
relapse post-HSCT showed no new AML-specific mutations or structural 
variations in immune-related genes [190]. However, dysregulation of 
pathways that may influence immune function, including down
regulation of MHC class II genes, which are involved in antigen pre
sentation have been observed. Downregulation of MHCII expression at 
the blast surface was confirmed by flow cytometry [190]. As compared 
to blasts at diagnosis, relapsed leukemic cells had a diminished capacity 
to stimulate a third-party CD4 T cell [190]. Of note, in vitro exposure to 
IFNγ rapidly reversed this phenotype, hinting at transcriptional or 
epigenetic mechanisms underlying these defects. [190]. In line with 
these findings, another group reported impaired CD8 T cell production 
of IFNγ and TNFα in AML patients relapsing post HSCT [43]. 

The immune features in PB and BM at relapse remain poorly un
derstood but recent studies have uncovered some important character
istics of the immune environment of relapsed AML (Fig. 3). Noviello et 
al., compared post-transplant BM samples of patients at relapse and in 
sustained complete remission (CR) [191]. The frequency of BM- but not 
PB Tregs was significantly higher in relapsed patients compared with CR 
patients. A higher proportion of early-differentiated memory stem 
(TSCM) and central memory BM-T cells expressed multiple inhibitory 
receptors such as PD-1, CTLA-4 and TIM-3 in relapsing patients than in 
CR patients. At relapse, T cells displayed a restricted TCR repertoire and 
impaired effector functions compatible with an exhausted phenotype. In 
addition, the early detection of severely exhausted (PD-1+Eomes+T- 
bet− ) BM-TSCM was predictive of relapse in a retrospective analysis. 
Accordingly, leukemia-specific T cells in patients prone to relapse dis
played exhaustion markers, absent in patients maintaining long-term CR 
[191]. Similar findings were reported by another group on peripheral 
blood [192]. Toffalori et al., analyzed the PB transcriptome in AML 
patients relapsing post HSCT. The relapse signatures were highly 
enriched in immune-related processes, including T cell co-stimulation 
and antigen presentation. The authors further documented deregula
tion of multiple co-stimulatory ligands on AML blasts and concomitant 
exhaustion markers on T cells leading to defective T cell-mediated 
allorecognition and elimination of leukemic cells [193]. From a mech
anistic point of view, it was recently demonstrated that post HSCT, 
relapsed AML cells reduce the glycolytic activity of T cells through pH 
modification, which leads to changes in their transcriptional profile and 
subsequent dysfunction. Interestingly, this effect could be counteracted 
by sodium bicarbonate suggesting a pharmacological application of this 
finding [194]. More recently, McCurdy et al. used multimodal machine 
learning to identify signatures of relapse specifically after HSCT when 
PTcy was used as GVHD prophylaxis [174]. They found that loss of NK 
and CD8 T cell inflammatory signaling predominated at relapse. In 
addition relapse was characterized by a loss of inflammatory gene sig
natures in NK cells and a transcriptional exhaustion phenotype in CD8 T 
cells [174]. 

Hence, relapse immune environment results from the combination of 
defective post-transplant immune reconstitution on one hand and im
mune escape from AML blasts on the other hand (Fig. 3). A systematic 
study of post-transplant immune readouts could help identify the best 
options to prevent and treat relapse. 

5.4. Immune strategies to treat and prevent relapse 

Many established and experimental options exist to prevent and/or 
treat post-transplant AML [188,195]. These options include molecules 
targeting specific mutated genes, hypomethylating agents, immune- and 
cell-therapy and share the common goal of enhancing an exhausted allo- 
immunity or avoid AML immune escape. Induction or stimulation of a 
pro-inflammatory environment can enhance GVL. Tyrosine-kinase in
hibitors (TKI) with activity against mutated Fms related receptor 
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tyrosine kinase 3 (FLT3) are used in the post-transplant maintenance 
setting for FLT3-mutated AML [196]. In addition to the TKI effect tar
geting the leukemic blasts, these agents may interact with the immune 
system to accelerate the development of a GVL effect. For example, 
mitochondrial activity of human CD8 T cells was enhanced upon sor
afenib exposure in responders, but not in non-responders, to this therapy 
[137,197]. Type I interferons are also used in prevention or treatment of 
post-HSCT AML relapse [198,199]. In this setting, the use of type I IFN 
was associated with persistence of cross-presenting dendritic cells and 
circulating leukemia antigen-specific T cells [199]. In the next para
graphs we describe treatment modalities specifically directed to 
relapsed AML microenvironment and the particular case of extra
medullary relapse. 

5.4.1. Donor lymphocyte infusions 
Donor lymphocyte infusions (DLI) can be used prophylactically in 

high risk disease or after T cell-depleted transplantation, pre-emptively 
when MRD rises or as treatment for overt relapse, alone or in combi
nation with other modalities [189,200–204]. Such infusion of poly
clonal intact T cells impacts the immune environment status by 
hastening immune reconstitution as indicated by increased T cell re
covery rate and improved donor chimerism. Post DLI analysis of PB T 
cells shows oligoclonal leukemia-specific expansion [205,206]. Bachir
eddy et al. integrated BM-derived single T cell gene expression, chro
matin accessibility and TCR sequencing at relapse, pre- and post DLI in 
chronic myeloid leukemia (CML). They showed that responding patients' 
BM was enriched in late differentiated T cells before DLI, which was 
associated with rapid and durable expansion of early differentiated T 
cells after adoptive transfer. In contrast, BM T cells from patients 
resistant to DLI displayed dysfunction features. Strikingly, the early 
differentiated T cells identified in responders originated mainly from the 
pre-DLI leukemic microenvironment rather than from the infused 
product [207]. A recent study done on PB similarly showed that DLI 

favored the expansion of the pre-DLI repertoire in responding AML pa
tients [208]. 

5.4.2. Epigenetic modulation 
Epigenetic modulators have multiple immunomodulatory effects 

relevant to post-HSCT relapse, including reversal of HLA expression loss, 
increased Treg frequency, increased expression of PD-L1 and PD-L2 on 
AML cells, upregulation of tumor antigens capable to induce a CD8 T cell 
response, and global promotion of inflammation [2,40,209,210]. Post- 
transplant maintenance therapy with azacitidine alone did not 
improve outcome [137,211]. However, panobinostat, another epige
netic modulator acting through deacetylase inhibition showed encour
aging effects on relapse, GVHD and survival [212]. Most promising 
results were obtained by combining hypomethylating agents and im
mune- or cell-therapy [2,213,214]. 

5.4.3. Extra-medullary relapse 
Extra-medullary (EM) AML is a rare entity referred to as myeloid 

sarcoma in the 2016 WHO classification [215]. EM AML can occur with 
or without concomitant BM involvement and involve any organ. 
Correlative evidence suggests that BM environment could provide a 
stronger GVL effect than other tissues that can act as immune sanctu
aries. Extramedullary localizations are over-represented in post-HSCT 
relapsed AML, 41% of all post-HSCT relapse in a Korean cohort [216]. 
Moreover, retrospective data identified the presence of chronic GVHD 
and late relapses with an increased risk of EM as compared to BM-only 
relapses. Finally, patients with EM relapse appeared to respond to 
cytotoxic therapy but not to DLI which further suggest that the BM may 
better support an effective GVL effect [217]. 

Similarly, mechanisms of relapse after adoptive transfer of leukemia- 
specific donor T cells included extra-medullary infiltration of known 
immune sanctuaries in a recent study [218]. On the other hand, some 
tissues such as skin could offer an environment favorable to CPI 

Fig. 3. Post-transplant immune environment, factors associated with relapse and corresponding therapeutic targets. 
Schematic representation summarizing key findings and likely interactions in post HSCT remission or relapse. Post-transplant remission relies on a robust graft versus 
leukemia effect associated with on a broad donor-derived T cell repertoire with effector memory T cell differentiation, and on the presence of potent natural killer 
(NK) cells. Immune escape mechanisms leading to relapse include loss of HLA expression by leukemic blasts which impairs both priming by antigen presenting cells 
(APC) and T cell mediated killing. Relapse is associated with incomplete donor chimerism and defective NK cell function. Immunotherapeutic interventions include 
donor lymphocyte infusions (DLI) which both directly target AML blasts and indirectly activates pre-DLI donor T cells. Type I interferons (IFN) can stimulate APCs, 
increase HLA molecules expression by AML blasts and activate T cells. Checkpoint inhibitors (CPI) can counteract T cell exhaustion by targeting markers such as 
CTLA4 and PD1 (represented by orange and red bars on the surface of T cells). 
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therapeutic efficacy, as patients with post-HSCT EM AML seemed to 
better respond to CTLA4 blockade in a phase Ib study [219]. In that 
study, responses were associated to in situ infiltration of cytotoxic CD8 T 
cells, decreased activation of Treg, and expansion of subpopulations of 
effector T cells in the PB [220]. These studies and others suggest CPI 
could be useful in selected cases of post-HSCT relapsed AML, particu
larly in EM relapse [221]. 

6. Conclusion and future directions 

In this review, we recapitulated the roles of the BM as a hemato
poietic but also lymphoid organ. We have detailed what is known of the 
AML immune microenvironment at diagnosis and across therapies with 
a focus on T cell counts, phenotypes and functions. Despite important 
heterogeneity, the immune status of AML BM is emerging as a critical 
biomarker that predicts outcome following standard treatments and 
immune-based interventions. Based on the available evidence, and with 
the increasingly available sequencing methods, we argue for the use of 
immune characterization along with the other well-known criteria to 
stratify AML in terms of prognosis and choice of therapy. Such a strat
ification could help identify the patients most likely to benefit from 
immune-based therapies. Similarly, current evidence indicates that 
robust immune reconstitution and persistence of an active non- 
exhausted immune environment are key to counteract AML immune 
escape, prevent relapse and ensure successful HSCT. Emerging data 
suggest early post-transplant immune markers could predict relapse and 
identify appropriate preventive and therapeutic strategies. Despite 
major advances in the recent years, cure of high-risk and relapsed AML 
remains an unmet medical need. We postulate that large prospective 
studies systematically analyzing immune environment readouts at 
diagnosis, across therapy and at relapse could address the intra- and 
interindividual heterogeneity of the disease and eventually allow the 
development of efficient immunotherapy for selected AML patients. 

Practice changing bullets  

- There is an immunological basis for AML heterogeneity 
- Immune subtypes of AML partially correlate with established cyto

genetic and molecular prognostic categories  
- The quantity and functional features of lymphoid cells in AML 

microenvironment contribute to the prognosis of the disease and 
possibly predict response to immunotherapy  

- Carefully selected immune-based interventions potentially revert the 
suppressive AML immune environment 

Research agenda 

- Prospective and comprehensive analysis of the immune microenvi
ronment, at diagnosis, after achievement of complete remission or in 
states of refractoriness and at relapse. Such prospective studies 
should include large number of patients to address the important 
inter- and intra-individual variability and age-related changes.  

- Correlate immune features with response to immune-based therapies 
to identify the best targets and the best candidates for 
immunotherapy.  

- Use of immune markers to predict response to immune therapy in the 
groups with the greatest medical needs (refractory AML, MRD- 
positive and post-HSCT relapse. 

Full red lines represent a pro-cytolytic activity, full blue lines indi
cate a positive interaction and dotted lines indicate an impaired mech
anism. Illustrations made with ScienceSlide® Suite 2010 edition. 
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