79 research outputs found

    The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    Get PDF
    The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo, and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electric resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia Coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health

    Extensive genomic diversity and selective conservation of virulence determinants in enterohemorrhagic Escherichia coli strains of O157 and non O157 serotypes

    Get PDF
    Background: Enterohemorrhagic Escherichia coli (EHEC) O157 causes severe food-borne illness in humans. The chromosome of O157 consists of 4.1 Mb backbone sequences shared by benign E. coli K-12, and 1.4 Mb O157-specific sequences encoding many virulence determinants, such as Shiga toxin genes (stx genes) and the locus of enterocyte effacement (LEE). Non-O157 EHECs belonging to distinct clonal lineages from O157 also cause similar illness in humans. According to the "parallel" evolution model, they have independently acquired the major virulence determinants, the stx genes and LEE. However, the genomic differences between O157 and non-O157 EHECs have not yet been systematically analyzed. Results: Using microarray and whole genome PCR scanning analyses, we performed a whole genome comparison of 20 EHEC strains of O26, O111, and O103 serotypes with O157. In non-O157 EHEC strains, although genome sizes were similar with or rather larger than O157 and the backbone regions were well conserved, O157-specific regions were very poorly conserved. Around only 20% of the O157- specific genes were fully conserved in each non-O157 serotype. However, the non-O157 EHECs contained a significant number of virulence genes that are found on prophages and plasmids in O157, and also multiple prophages similar to, but significantly divergent from, those in O157. Conclusion: Although O157 and non-O157 EHECs have independently acquired a huge amount of serotype- or strain-specific genes by lateral gene transfer, they share an unexpectedly large number of virulence genes. Independent infections of similar but distinct bacteriophages carrying these virulence determinants are deeply involved in the evolution of O157 and non-O157 EHECs

    Cycle Inhibiting Factors (Cifs): Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Get PDF
    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions

    Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways

    Get PDF
    The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria

    The genotoxin colibactin

    No full text
    National audienceEscherichia coli is a commensal inhabitant of the lower gastrointestinal tract of humans where it is the predominant facultative anaerobic organism. E. coli also belongs to the initial microbiota that colonizes the mammalian gut. Infants are stably colonized by E. coli within a few days after birth. Certain E. coli strains display enhanced ability to cause infection outside the intestinal tract. These extra-intestinal pathogenic E. coli (ExPEC) carry specific genetic determinants or virulence factors that are clustered on genomic islands. We have shown that a subset of ExPEC isolates harbor a genomic island, the pks island, which codes for the production of colibactin, a polyketide-non ribosomal peptide genotoxin. Colibactin production is not restricted to E. coli strains isolated from extra-intestinal infections. Commensal E. coli strains harboring the pks island are ubiquitous in the urban population of industrialized countries. Studies have focused on the impact of colibactin on host cells in vitro and in vivo. The production of colibactin was indeed demonstrated to generate DNA double strand breaks and host cell cycle arrest. Moreover, we recently showed that renewal of the mature intestinal epithelium depends on neonate gut residents and how critical is the synthesis of colibactin by commensal E. coli strain colonizing the newborn. Recent data also indicate that pks+ E. coli strains induce genomic instability and cellular senescence, which could induce carcinogenesis. On the other hand, we have also shown that the pks island is required for the colonic anti-inflammatory properties of a clinically efficient probiotic that is used empirically since almost one century (E. coli Nissle 1917). This Yin-Yang effect of colibactin could result from the production of heterogeneous compounds with different biological activities by the pks island-encoded biosynthetic pathway

    Reply to Dubbert and von BĂŒnau, “A Probiotic Friend”

    No full text
    International audienc

    Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells.

    Get PDF
    Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB) and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated ÎČ-galactosidase (SA-ÎČ-Gal) activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-ÎČ-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects

    Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet?

    No full text
    International audienceColibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli

    The Enteropathogenic Escherichia coli Effector Cif Induces Delayed Apoptosis in Epithelial Cells▿

    No full text
    The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins, the cyclomodulins, which modulate the host cell cycle. Upon injection into the host cell by the type III secretion system of enteropathogenic Escherichia coli (EPEC), Cif induces both G2 and G1 cell cycle arrests. The cell cycle arrests correlate with the accumulation of p21waf1 and p27kip1 proteins that inhibit CDK-cyclin complexes, whose activation is required for G1/S and G2/M transitions. Increases of p21 and p27 levels are independent of p53 transcriptional induction and result from protein stabilization through inhibition of the ubiquitin/proteasome degradation pathway. In this study, we show that Cif not only induces cell cycle arrest but also eventually provokes a delayed cell death. Indeed, 48 h after infection with EPEC expressing Cif, cultured IEC-6 intestinal cells were positive for extracellular binding of annexin V and exhibited high levels of cleaved caspase-3 and lactate dehydrogenase release, indicating evidence of apoptosis. Cif was necessary and sufficient for inducing this late apoptosis, and the cysteine residue of the catalytic site was required for Cif activity. These results highlight a more complex role of Cif than previously thought, as a cyclomodulin but also as an apoptosis inducer
    • 

    corecore