43 research outputs found

    Estimating and Testing Exponential Affine Term Structure Models by Kalman Filter

    Get PDF
    This paper proposes a unified state-space formulation for parameter estimation of exponential-affine term structure models. This class of models, charaterized by Duffie and Kan (1993), contains models such as Vasicek (1977), Cox, Ingersoll and Ross (1985) and Chen and Scott (1992), among others. The proposed method uses an approximate linear Kalman filter which only requires specifying the conditional mean and variance of the system in an approximate sense. The method allows for measurement errors in the observed yields to maturitiy, and can simultaneously deal with many yields on bonds with different maturities. A Monte Carlo study indicates thet the proposed method is a reliable procedure for moderate sample sizes. An empirical analysis of three existing exponential-affine term structure models is carried out using monthly U.S. Treasury yield data with four different maturities. Our test results indicate a strong rejection of all three models. Cette recherche propose une approche unificatrice pour l'estimation des paramètres de modèles de structure de taux d'intérêt de la classe exponentielle-affine. Cette famille de modèles, caractérisée par Duffie et Kan (1993), contient entre autres les modèles de Vasicek (1977), Cox, Ingersoll et Ross (1985) et Chen et Scott (1992). La méthode proposée utilise un filtre de Kalman approximatif qui requiert la spécification de l'espérance et de la variance conditionnelle du système. La méthode utilise simultanément plusieurs séries de rendements et permet l'ajout d'erreurs de mesure pour chaque serie. Une étude de simulation indique que la méthode proposée est fiable pour des échantillons de taille modérée. Une étude empirique utilisant trois modèles différents de la classe exponentielle-affine est présentée.Term Structure, Kalman Filter, Exponential Affine, State Space Model, Quasi Maximum Likelihood, Lagrange Multiplier Test, Structure à Terme, Filtre de Kalman, Exponentielle-affine, Modèle State-Space, Quasi-maximum de vraisemblance, Test du Multiplicateur de Lagrange

    Empirical Martingale Simulation for Asset Prices

    Get PDF
    This paper proposes a simple modification to the standard Monte Carlo simulation procedure for computing the prices of derivative securities. The modification imposes the martingale property on the simulated sample paths of the underlying asset price. This procedure is referred to as the empirical martingale simulation (EMS). The EMS ensures that the price estimated by simulation satisfies rational option pricing bounds. The EMS also yields a substantial error reduction for the price estimate. The EMS can be easily coupled with the standard variance reduction methods to obtain greater computational efficiency. Simulation studies are conducted for European and Asian call options using both the Black and Scholes and GARCH option pricing frameworks. The results indicate that the EMS yields substantial variance reduction particularly for in- and at-the-money options. Cette étude propose une modification simple aux procédures traditionnelles de calcul de prix des produits dérivés par simulation de Monte Carlo. La modification impose la propriété de martingale aux trajectoires simulées de la variable d'état sous-jacente. L'utilisation de cette procédure assure que l'estimé de prix respecte les bornes rationnelles d'option tout en diminuant de façon substantielle la variance des estimés de prix. La procédure peut aisément être jumelée aux méthodes traditionnelles de réduction de variance afin d'obtenir une plus grande efficacité. Une étude de simulation est présentée pour des options d'achat Européennes et Asiatiques. Les résultats indiquent que la méthode obtient des réductions substantielle de la variance des estimés de prix et ce, particulièrement pour les options in et at the money .Martingale, Option Pricing, Monte Carlo Simulation, GARCH, Asian Options, Martingale, Evaluation des Options, Simulation de Monte Carlo, GARCH, Options Asiatiques

    Seize the Moments: Approximating American Option Prices in the GARCH Framework

    Get PDF
    This paper proposes an efficient approach to compute the prices of American style options in the GARCH framework. Rubinstein's (1998) Edgeworth tree idea is combined with the analytical formulas for moments of the cumulative return under GARCH developed in Duan et al. (1999, 2002) to yield a simple recombining binomial tree for option valuation in the GARCH context. Since the resulting tree is univariate, the proposed approach represents a convenient approximation of the bivariate GARCH system. Numerical analyses are used to demonstrate the speed and accuracy of the proposed approximation.American Options; Edgeworth binomial tree; Garch process

    Default Risk in Corporate Yield Spreads

    Get PDF
    An important research question examined in the recent credit risk literature focuses on the proportion of corporate yield spreads which can be attributed to default risk. Past studies have verified that only a small fraction of the spreads can be explained by default risk. In this paper, we reexamine this topic in the light of the different issues associated with the computation of transition and default probabilities obained with historical rating transition data. One significant finding of our research is that the estimated default-risk proportion of corporate yield spreads in highly sensitive to the term structure of the default probabilities estimated for each rating class. Moreover, this proportion can become a large fraction of the yield spread when sensitivity analyses are made with respect to recovery rates, default cycles in the economy, and information considered in the historical rating transition data.Credit risk, default risk, corporate yield spread, transition matrix, default probability, Moody's, Standard and Poor's, recovery rate, data filtration, default cycle

    A Reduced Form Model of Default Spreads with Markov-Switching Macroeconomic Factors

    Get PDF
    An important research area of the corporate yield spread literature seeks to measure the proportion of the spread that can be explained by factors such as the possibility of default, liquidity, tax differentials and market risk. We contribute to this literature by assessing the ability of observed macroeconomic factors and the possibility of changes in regime to explain the proportion of yield spreads caused by the risk of default in the context of a reduced form model. For this purpose, we extend the Markov Switching risk-free term structure model of Bansal and Zhou (2002) to the corporate bond setting and develop recursive formulas for default probabilities, risk-free and risky zero-coupon bond yields as well as credit default swap premia. The model is calibrated with consumption, inflation, risk-free yields and default data for Aa, A and Baa bonds from the 1987-2008 period. We find that our macroeconomic factors are linked with two out of three sharp increases in the spreads during this sample period, indicating that the variations can be related to macroeconomic undiversifiable risk. The estimated default spreads can explain almost half of the 10 years to maturity industrial Baa zero-coupon yields in some regime. Much smaller proportions are found for Aa and A bonds with numbers around 10%. The proportions of default estimated with credit default swaps are higher, in many cases doubling those found with corporate yield spreads.Credit spread, default spread, Markov switching, macroeconomic factors, reduced form model of default, random subjective discount factor, credit default swap, CDS

    A Reduced Form Model of Default Spreads with Markov Switching Macroeconomic Factors

    Get PDF
    An important research area of the corporate yield spread literature seeks to measure the proportion of the spread explained by factors such as the possibility of default, liquidity or tax differentials. We contribute to this literature by assessing the ability of observed macroeconomic factors and the possibility of changes in regime to explain the proportion in yield spreads caused by the risk of default in the context of a reduced form model. For this purpose, we extend the Markov Switching risk-free term structure model of Bansal ad Zhou (2002) to the corporate bond setting and develop recursive formulas for default probabilities, risk-free and risky zero-coupon bond yields. The model is calibrated out of sample with consumption, inflation, risk-free yield and default data over the 1987-1996 period. Our results indicate that inflation is a key factor to consider for explaining default spreads during our sample period. We also find that the estimated default spreads can explain up to half of the 10 year to maturity Baa zero-coupon yield in certain regime with different sensitivities to consumption and inflation through time.Credit spread, default spread, Markov Switching, macroeconomic factors, reduced form model of default

    Empirical Martingale Simulation for Asset Prices

    Get PDF
    Cette étude propose une modification simple aux procédures traditionnelles de calcul de prix des produits dérivés par simulation de Monte Carlo. La modification impose la propriété de martingale aux trajectoires simulées de la variable d'état sous-jacente. L'utilisation de cette procédure assure que l'estimé de prix respecte les bornes rationnelles d'option tout en diminuant de façon substantielle la variance des estimés de prix. La procédure peut aisément être jumelée aux méthodes traditionnelles de réduction de variance afin d'obtenir une plus grande efficacité. Une étude de simulation est présentée pour des options d'achat Européennes et Asiatiques. Les résultats indiquent que la méthode obtient des réductions substantielle de la variance des estimés de prix et ce, particulièrement pour les options in et at the money.This paper proposes a simple modification to the standard Monte Carlo simulation procedure for computing the prices of derivative securities. The modification imposes the martingale property on the simulated sample paths of the underlying asset price. This procedure is referred to as the empirical martingale simulation (EMS). The EMS ensures that the price estimated by simulation satisfies rational option pricing bounds. The EMS also yields a substantial error reduction for the price estimate. The EMS can be easily coupled with the standard variance reduction methods to obtain greater computational efficiency. Simulation studies are conducted for European and Asian call options using both the Black and Scholes and GARCH option pricing frameworks. The results indicate that the EMS yields substantial variance reduction particularly for in- and at-the-money options

    Estimating and Testing Exponential Affine Term Structure Models by Kalman Filter

    Get PDF
    Cette recherche propose une approche unificatrice pour l'estimation des paramètres de modèles de structure de taux d'intérêt de la classe exponentielle-affine. Cette famille de modèles, caractérisée par Duffie et Kan (1993), contient entre autres les modèles de Vasicek (1977), Cox, Ingersoll et Ross (1985) et Chen et Scott (1992). La méthode proposée utilise un filtre de Kalman approximatif qui requiert la spécification de l'espérance et de la variance conditionnelle du système. La méthode utilise simultanément plusieurs séries de rendements et permet l'ajout d'erreurs de mesure pour chaque serie. Une étude de simulation indique que la méthode proposée est fiable pour des échantillons de taille modérée. Une étude empirique utilisant trois modèles différents de la classe exponentielle-affine est présentée.This paper proposes a unified state-space formulation for parameter estimation of exponential-affine term structure models. This class of models, charaterized by Duffie and Kan (1993), contains models such as Vasicek (1977), Cox, Ingersoll and Ross (1985) and Chen and Scott (1992), among others. The proposed method uses an approximate linear Kalman filter which only requires specifying the conditional mean and variance of the system in an approximate sense. The method allows for measurement errors in the observed yields to maturitiy, and can simultaneously deal with many yields on bonds with different maturities. A Monte Carlo study indicates thet the proposed method is a reliable procedure for moderate sample sizes. An empirical analysis of three existing exponential-affine term structure models is carried out using monthly U.S. Treasury yield data with four different maturities. Our test results indicate a strong rejection of all three models

    A Reduced Form Model of Default Spreads with Markov-Switching Macroeconomics Factors

    Get PDF
    An important research area of the corporate yield spread literature seeks to measure the proportion of the spread that can be explained by factors such as the possibility of default, liquidity, tax differentials and market risk. We contribute to this literature by assessing the ability of observed macroeconomic factors and the possibility of changes in regime to explain the proportion of yield spreads caused by the risk of default in the context of a reduced form model. For this purpose, we extend the Markov Switching risk-free term structure model of Bansal and Zhou (2002) to the corporate bond setting and develop recursive formulas for default probabilities, risk-free and risky zero-coupon bond yields as well as credit default swap premia. The model is calibrated with consumption, inflation, risk-free yields and default data for Aa, A and Baa bonds from the 1987-2008 period. We find that our macroeconomic factors are linked with two out of three sharp increases in the spreads during this sample period, indicating that the variations can be related to macroeconomic undiversifiable risk. The estimated default spreads can explain almost half of the 10 years to maturity industrial Baa zero-coupon yields in some regime. Much smaller proportions are found for Aa and A bonds with numbers around 10%. The proportions of default estimated with credit default swaps are higher, in many cases doubling those found with corporate yield spreads.The authors acknowledge the financial support from the National Science and Engineering Research Council of Canada (NSERC), the Fonds québécois de recherche sur la nature et les technologies (FQRNT), the Social Sciences and Humanities Research Council of Canada (SSHRC), the Center for research on E-finance (CREF), the Canada Research Chair in Risk Management, and the Institut de Finance Mathématique de Montréal

    Default Risk in Corporate Yield Spreads

    Get PDF
    An important research question examined in the recent credit risk literature focuses on the proportion of corporate yield spreads which can be attributed to default risk. Past studies have verified that only a small fraction of the spreads can be explained by default risk. In this paper, we reexamine this topic in the light of the different issues associated with the computation of transition and default probabilities obtained with historical rating transition data. One significant finding of our research is that the estimated default-risk proportion of corporate yield spreads is highly sensitive to the term structure of the default probabilities estimated for each rating class. Moreover, this proportion can become a large fraction of the yield spread when sensitivity analyses are made with respect to recovery rates, default cycles in the economy, and information considered in the historical rating transition data
    corecore