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Résumé / Abstract

Cette étude propose une modification simple aux procédures
traditionnelles de calcul de prix des produits dérivés par simulation de Monte Carlo.
La modification impose la propriété de martingale aux trajectoires simulées de la
variable d'état sous-jacente. L'utilisation de cette procédure assure que l'estimé de
prix respecte les bornes rationnelles d'option tout en diminuant de façon
substantielle la variance des estimés de prix. La procédure peut aisément être
jumelée aux méthodes traditionnelles de réduction de variance afin d'obtenir une
plus grande efficacité. Une étude de simulation est présentée pour des options
d'achat Européennes et Asiatiques. Les résultats indiquent que la méthode obtient
des réductions substantielle de la variance des estimés de prix et ce, particulièrement
pour les options *in+ et *at the money+. 

This paper proposes a simple modification to the standard Monte
Carlo simulation procedure for computing the prices of derivative securities. The
modification imposes the martingale property on the simulated sample paths of
the underlying asset price. This procedure is referred to as the empirical
martingale simulation (EMS). The EMS ensures that the price estimated by
simulation satisfies rational option pricing bounds. The EMS also yields a
substantial error reduction for the price estimate. The EMS can be easily coupled
with the standard variance reduction methods to obtain greater computational
efficiency. Simulation studies are conducted for European and Asian call options
using both the Black and Scholes and GARCH option pricing frameworks. The
results indicate that the EMS yields substantial variance reduction particularly
for in- and at-the-money options.

Mots clé : Martingale, Evaluation des Options, Simulation de Monte Carlo, GARCH,
  Options Asiatiques

Keywords : Martingale, Option Pricing, Monte Carlo Simulation, GARCH, Asian
      Options



1. Introduction

Monte Carlo simulation is a widely used tool for estimating derivative security prices when there
is no closed-form solution. It was ¯rst introduced by Boyle (1977) to option pricing. Monte Carlo
method is especially useful when one deals with path dependent asset prices and/or option payo®s;
for example, it has been used in Duan (1995) to compute the GARCH option prices (path dependent
asset prices) and in Kemna and Vorst (1990) to compute Asian option prices (path dependent
payo®s). Boyle, et al (1995) provides a comprehensive survey on the recent developments in Monte
Carlo methods for option pricing.

The price of a derivative contract in an arbitrage-free economy can be expressed as a discounted
average of its random payo®s. Monte Carlo simulation is hence a natural tool for computing this
average. The commonly used Monte Carlo simulation procedure for option pricing can be brie°y
described as follows: ¯rst simulate sample paths for the underlying asset price; second compute its
corresponding option payo® for each sample path; and ¯nally average the simulated payo®s and
discount the average to yield the Monte Carlo price of an option. Although arbitrary degree of
accuracy can in principle be achieved, Monte Carlo simulation tends to be a rather numerically
intensive method if a high degree of accuracy is desired. This is, of course, due to the well-known
fact that the standard error of a Monte Carlo estimate is inversely proportional to the square root
of the number of simulated sample paths. A less known di±culty related to the use of Monte Carlo
simulation is the occurrence of the simulated price violating rational option pricing bounds, and
hence being a non-sensible price estimate. This bound violation could have serious implications.
The implied volatility based on the Black and Scholes (1973) formula is often used as a standardized
measure for examining more complex option pricing models; for example, Hull and White (1987)
and Duan (1995). When the option pricing bound is violated, the Black-Scholes implied volatility
cannot even be computed.

The idea of this paper is based on a simple observation that simulated sample paths for the
underlying asset price almost always fail to possess the martingale property even though the theo-
retical model does. This results from the fact that simulation can only approximate the theoretical
properties because of ¯nite repetitions and the quality of the random number generator. The fail-
ure to ensure the martingale property has particularly serious consequences because the asset price
dynamic is typically modeled as an exponential (semi-)martingale. This multiplicative system has
a rather undesirable error propagation property. It often requires a very large number of simulation
repetitions to dampen simulation errors. We propose a simple correction to the standard procedure
by ensuring that the simulated sample paths are together a martingale in an \empirical" sense.
This correction will be referred to as empirical martingale simulation (EMS). With the EMS one
can be certain that option pricing bounds, due to Jensen's inequality, are satis¯ed in simulation.
Apart from yielding more sensible price estimates, the use of the EMS can substantially reduce
Monte Carlo errors, particularly signi¯cant for in- and at-the-money options. The error reduction
is irrespective of the number of sample paths, and is obtained for the plain-vanilla European options
as well as for the path-dependent ones such as Asian options. The results also hold true for both
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the Black-Scholes and GARCH option pricing frameworks.
The EMS can also be coupled with the standard variance reduction techniques. A number

of such techniques are available for option pricing. Antithetic and control-variate simulations are
perhaps the most widely known procedures. We show in this paper that the EMS can be easily
incorporated into these variance reduction techniques to obtain even greater simulation e±ciency.
The EMS correction is truly simple and practically requires no additional programming e®orts.

2. The Martingale Property in Monte Carlo Simulation

The theoretical works for contingent claim pricing mostly rely on absence of arbitrage. In Black
and Scholes (1973) and Merton (1973), option pricing formulas were derived from this principle.
The martingale connection to the arbitrage-free price system was ¯rst observed by Cox and Ross
(1976) and later formalized by Harrison and Kreps (1979) and Harrison and Pliska (1981). In an
explicit equilibrium setting such as Lucas (1978), the martingale connection can also be established;
for example, Duan (1995) used this approach to derive the GARCH option pricing model. In this
paper we explore the martingale property in Monte Carlo simulation. For the ease of exposition, we
consider a price system consisting of two securities { one risky and one risk-free. The risky security,
say a common stock, does not pay dividends, and its price, denoted by St; has the following dynamic
under the risk neutral probability measure Q:

St = S0 exp[rt¡
1

2

Z t

0
¾2sds+

Z t

0
¾sdWs]; (2.1)

where r is the continuously compounded return on the risk-free security, ¾s is the instantaneous
standard deviation of the asset return and Ws is a standard Brownian motion under probability
measure Q.1 It is easy to verify that the discounted asset price is indeed a Q-martingale; that is,
for any t ¸ ¿ ¸ 0,

E
Q[e¡rtStjF¿ ] = e

¡r¿
S¿ ; (2.2)

where EQ(¢) denotes the expectation operator under the risk neutral measure Q and F¿ the infor-
mation ¯ltration up to time ¿ .

In a typical Monte Carlo simulation, this martingale property almost always fails in the simu-
lated sample. In other words, the discounted average of St computed from a Monte Carlo simulation
will be in almost all cases di®erent from S0. This discrepancy between the \empirical" and the-
oretical values will, of course, depend on the sample size and the quality of the random number
generator. However, even a small departure of the sample value from its theoretical one can have
important consequences. For example, in the case of a European call option, the failure to \em-
pirically" satisfy the martingale property may result in a violation of the following rational option
pricing bound:

C0(t) > max(S0 ¡Ke
¡rt

; 0); (2.3)

where K is the exercise price and C0(t) is the current price of the European call option maturing
at time t.2 This bound can be derived from a direct application of Jensen's inequality to the

1For option pricing in the GARCH framework, a discrete-time analogous formula can be found in Duan (1995).
2The failure to \empirically" possess the martingale property can also lead to the violation of the put-call parity.
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theoretical expression:
C0(t) = e

¡rt
E
Q[max(St ¡K; 0)jF0]: (2.4)

The sample equivalent to the RHS of (4) may be less than the right-hand side (RHS) of (3) if the
discounted average of St is smaller than S0.

This point can be better understood by considering a deep in-the-money call. Since the \max"
function causes very few truncations at zero, the theoretical call price is well approximated by:

C0(t) ¼ e
¡rt[EQ(StjF0)¡K] if K=S0 is small. (2.5)

De¯ne the discounted average of the simulated asset prices at time t with n sample paths as:

Ŝ0(t; n) =
1

n
e
¡rt

nX
i=1

Ŝi(t); (2.6)

where Ŝi(t) is the ith simulated asset price at time t, for i = 1; : : : ; n. The corresponding call price
by Monte Carlo simulation, denoted by Ĉ0(t; n), must be well approximated by:

Ĉ0(t; n) =
1

n
e
¡rt

nX
i=1

max[Ŝi(t)¡K; 0] (2.7)

¼ Ŝ0(t; n)¡Ke
¡rt if K=S0 is small. (2.8)

If Ŝ0(t; n) is smaller than S0, it is possible that the computed call price violates the rational option
pricing bound; that is, Ĉ0(t; n) · max(S0 ¡Ke¡rt; 0).

To illustrate this bound violation, we perform a simulation study using the Black and Scholes
(1973) model. For this model, the asset price process is a special case of (1) with a constant
volatility. The Monte Carlo option price for a given n and t can be computed according to (7).
The numbers in Table 1 are the percentages of bound violation in 1000 Monte Carlo repetitions.
The ¯rst column of the table indicates the asset-to-strike price ratio. Three maturities { 1, 3 and
9 months { are considered. We also conduct the analysis using 1000 and 10,000 sample paths in
each of the Monte Carlo calculations.

The percentage of bound violations is higher for deep in- and out-of-the-money options. This
percentage can attain 50% for deep in-the-money and 100% for deep out-of-the-money. The bound
violation lessens when the number of sample paths increases. The occurrence of bound violation also
depends on the maturity of an option. For shorter-maturity options, it is more likely to experience
a bound violation even with 10,000 sample paths. These results are expected because the price
of an option approaches the pricing bound when the strike price is either increased or decreased.
In other words, the time-value component of an option decreases when the strike price is pushed
to the extremes. When the time-value component drops in magnitude, a small Monte Carlo error
can cause a bound violation. The time-value component argument also works in the dimension of
option maturity and the number of sample paths. Increasing an option's maturity yields a higher
time-value component, and hence causes less violations. An increase in the number of sample paths
reduces Monte Carlo errors so that a given time-value component is more likely to be su±cient for
covering Monte Carlo errors.
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3. The Empirical Martingale Simulation

In this section we present a simple correction to the standard Monte Carlo simulation procedure.
This proposed correction imposes the martingale property on the collection of the simulated sample
paths. This new simulation procedure, referred to as the empirical martingale simulation (EMS),
generates the EMS asset prices at a sequence of time points, t1; t2; ¢ ¢ ¢; tm, using the following
dynamic:

S¤i (tj ; n) = S0
Zi(tj ; n)

Z0(tj ; n)
; (3.1)

where

Zi(tj ; n) = S
¤

i (tj¡1; n)
Ŝi(tj)

Ŝi(tj¡1)
; (3.2)

Z0(tj ; n) =
1

n
e¡rtj

nX
i=1

Zi(tj ; n): (3.3)

Note that Ŝi(t) is the ith simulated asset price at time t prior to the EMS adjustment. The
adjustment steps can be understood as follows. First, we take the standard simulated return from
tj¡1to tj , i.e., Ŝi(tj)=Ŝi(tj¡1), to create a temporary asset price at time tj , i.e., Zi(tj ; n). Second,
we compute the discounted sample average, Z0(tj ; n). Finally, we compute the EMS asset price at
time tj by (9). After the EMS correction, the simulation moves on to the next time point, and
repeats the whole process again. Note that the EMS conducts a simulation of n sample points at
one time, which is required for making the EMS correction. If the use of a very large n causes a
memory allocation problem, the sample can be broken into subsamples with each undergoing the
EMS correction separately.

The EMS bears some resemblance to the moment-matching method of Barraquand (1994).3

The EMS is, however, entirely di®erent from the moment-matching method in the following sense.
For the EMS, the correct ¯rst moment in simulation is ensured by using a multiplicative adjustor
instead of using an additive one as in the moment-matching method when it is applied to the asset
price directly. This di®erence is extremely important because asset prices are typically modeled
as exponential (semi-)martingales. The multiplicative adjustment ensures no domain violation
whereas the additive adjustment cannot.4 If the moment-matching adjustment is applied to the
exponent of an exponential martingale (logarithmic asset price), in which case there will be no
domain violation, the simulated asset prices will no longer be an \empirical" martingale. The EMS
correction is hence the most natural adjustment, and it is made to the entire simulated time series
as required by the theoretical asset price dynamic.

3We use the terminology of Boyle, et al (1995) to refer to the quadratic resampling method of Barraquand (1994)

as the moment-matching method.
4Footnote 7 in Boyle, et al (1995) provides a discussion on domain violation of Barraquand's (1994) moment-

matching method.
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The discounted EMS asset price estimate at time 0 is therefore:

S
¤

0(t; n) =
1

n
e
¡rt

nX
i=1

S
¤

i (t; n) (3.4)

= S0 (3.5)

This is true for any n and t 2 ft1; t2; ¢ ¢ ¢; tmg. Since the EMS asset price can be regarded as an
\empirical" martingale with equal probabilities assigned to all simulated sample paths, the use of
Jensen's inequality ensures that the option pricing bound is always satis¯ed. Formally, we de¯ne
the EMS option price estimate as

C
¤

0(t; n) =
1

n
e
¡rt

nX
i=1

max[S¤i (t; n)¡K; 0] (3.6)

It follows that C¤

0(t; n) > max[S¤0(t; n)¡Ke¡rt; 0] = max(S0 ¡Ke¡rt; 0).
The EMS for derivatives pricing also preserves the consistency, i.e., the convergence to the the-

oretical value, under the fairly general conditions. This is a relevant because the EMS sample paths
are by construction not independent. The following proposition provides a general characterization
for the consistency.

Proposition 1. Let S(tj) satisfy the strong law of large numbers for all tj 's, i.e., Ŝ0(tj ; n) ! S0

almost surely as n! 1. If the payo® function, f [S(t1); ¢ ¢ ¢; S(tm)], is uniformly continuous, then

as n!1,

1

n

nX
i=1

jf [S¤i (t1; n); ¢ ¢ ¢; S
¤

i (tm; n)]¡ f [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]j ! 0, almost surely. (3.7)

Proof: See Appendix.
Proposition 1 states that for a well-behaved payo® function, the EMS is asymptotically equiv-

alent to the standard Monte Carlo simulation. If the price estimate based on the standard Monte
Carlo simulation is consistent, it must also be true for the EMS price estimate. For a European
option, it is clear that the payo® function is uniformly continuous. The EMS price estimate is
thus consistent irrespective of the pricing framework being the Black and Scholes or GARCH or
anything else. For Asian options, the same conclusion applies. Proposition 1 is nevertheless limited;
for example, digital (binary) options have discontinuous payo® functions. This type of contracts
can be dealt with if we strengthen the distribution requirement. We need to have the following
de¯nition to proceed with the discussion.

De¯nition 1. A real-valued function mapping from a subset of Rm to R is said to satisfy the

generic uniform continuity if there exists a ¯nite collection of connected open subsets of the domain

with their union being dense in the domain, and the function is uniformly continuous over any

element of this ¯nite collection.
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Proposition 2. Let S(tj) have a continuous distribution and satisfy the strong law of large

numbers for all tj 's, i.e., Ŝ0(tj ; n) ! S0 almost surely as n ! 1. If the payo® function,

f [S(t1); ¢ ¢ ¢; S(tm)], satisfy the generic uniform continuity, then as n!1,

1

n

nX
i=1

jf [S¤i (t1; n); ¢ ¢ ¢; S
¤

i (tm; n)]¡ f [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]j ! 0, almost surely. (3.8)

Proof: See Appendix.
The payo® function of a digital option takes on two values { 0 and 1. Although it is discontin-

uous, it satis¯es the generic uniform continuity. Proposition 2 implies that if the underlying asset
price has a continuous distribution, the EMS price estimates for its digital options must also be
consistent. This in turn suggests that the EMS correction works well under the typical distribu-
tion assumption for option pricing. In fact, we can conclude from Proposition 2 that the EMS is
applicable to almost all relevant cases of derivative pricing.

Another attractive feature of the EMS is its ability to reduce the Monte Carlo simulation error.
The source of error reduction comes from the fact that the EMS ensures the martingale property
in the simulated sample paths. Because the discounted average asset price, S¤0(t; n), always equals
S0,Var[S¤0(t; n)] = 0. This is, however, not true for Ŝ0(t; n), i.e., Var[Ŝ0(t; n)] > 0. The implication
of this property for option prices is best seen for in-the-money options. The call price computed
with a Monte Carlo simulation with and without the EMS correction can be written approximately
as:

Ĉ0(t; n) ¼ Ŝ0(t; n)¡Ke
¡rt if K=S0 is small, (3.9)

C
¤

0(t; n) ¼ S
¤

0(t; n)¡Ke
¡rt if K=S0 is small. (3.10)

This in turn implies that

Var[Ĉ0(t; n)] ¼ Var[Ŝ0(t; n)] > 0 if K=S0 is small, (3.11)

Var[C¤

0(t; n)] ¼ Var[S¤0(t; n)] = 0 if K=S0 is small. (3.12)

The EMS option price estimate therefore has a smaller variance, or even negligible if the option is
deep in-the-money. The numerical signi¯cance of the EMS error reduction is examined in the next
section.

4. The EMS Applications

The application of the EMS to two option pricing frameworks { Black and Scholes (1973) and
GARCH (Duan, 1995) { is studied here. For each pricing framework, we consider two types of
contracts { European calls and Asian calls. We choose two pricing frameworks and two di®erent
types of option contracts to demonstrate path-dependency in terms of option payo®s and/or asset
price dynamic. Asian options give an interesting case of path-dependent option payo®s that require
Monte Carlo simulation, whereas the GARCH framework provides a situation in which asset price
dynamic is path-dependent.
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For each model and contract, we generate 1000 Monte Carlo option price estimates. These
prices are computed with both 1000 and 10,000 sample paths to examine the impact caused by
di®erent numbers of sample paths.5 We consider three maturities {1, 3 and 9 months { and three
asset-to-strike price ratios { 1.1, 1 and 0.9. In our numerical analyses, one year is assumed to
have 365 days for the purpose of annualization. We compare the EMS with the standard Monte
Carlo simulation. We also incorporate the variance reduction techniques such as antithetic and
control-variate simulation whenever appropriate.

4.1. The Black and Scholes option pricing framework

For European call options in the Black and Scholes (1973) framework, the underlying asset price
is simulated using (1) and setting ¾t to a constant. This simulation need not be done step-by-step
because it is not path dependent.6 For the EMS, we simply take the simulated random variates
and apply once the EMS correction. The results are presented in Table 2.

For European calls, the mean value of either the crude Monte Carlo or the EMS prices in
1000 repetitions is very close to its theoretical price. As expected, for all cases presented in this
table, the EMS option prices have smaller standard deviations when compared to the crude Monte
Carlo simulation. The last row in each panel reports the ratios of the crude simulation to the
EMS standard deviations. The reduction in variance is not sensitive to the number of sample
paths. However, changes in this ratio are observed when the maturity and exercise price are varied.
For the in-the-money short-maturity option, the ratio reveals a phenomenal error reduction. The
standard deviation of the EMS price is smaller by a factor of approximately 10. The decrease
in standard deviation is very substantial for at-the-money short-maturity options with a factor of
approximately 2. When the maturity of the option is increased, the error reduction for in-the-money
options becomes smaller, but still substantial. This can be explained by a larger probability for the
asset price to ¯nish out-of-the-money when the maturity is increased. In short, whenever there is a
larger number of truncations caused by the \max" function, the EMS has a smaller e±ciency gain.
For out-of-the-money options, however, the ratio of standard deviations increases as the maturity
increases. This can be explained by the relative increase in the standard deviations of the crude
Monte Carlo simulation and the EMS. When the maturity is increased, the standard deviation of
the EMS increases at a slower rate than that of the crude Monte Carlo simulation. The increase
in maturity therefore has an e®ect of levelling the error reduction across moneyness positions. The
e±ciency gain of the EMS is nevertheless signi¯cant across the board.

For Asian call options, the entire sample path of the asset price becomes important because the
option payo® is based on the path average of the asset prices. We assume that the path average is
calculated on daily closing prices. The asset prices must then be simulated daily according to

St+1 = St exp[r ¡
¾2

2
+ ¾"t+1]; (4.1)

5We use the built-in normal random number generator of the matrix programming language GAUSS version 3.2.12.
6For European options, a closed-form solution exists. We only use these options as a means to compare the EMS

with the standard simulation procedure.
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where r and ¾ are the daily risk-free rate and instantaneous standard deviation, respectively. The
random variable "t+1 is an element of an i.i.d. standard normal random sequence. Let the maturity
of the Asian call option be T , for the ith sample path, its payo® equals max(Âi;T ¡K; 0) where

Âi;T = 1
T

PT
t=1 Ŝi(t). The ith sample path for the EMS is obtained using the correction to Ŝi(t)

described in (9) period-by-period to the maturity of the option. The path average and option payo®
are then computed accordingly.

For the Asian option example, we also use the antithetic variance reduction technique. The
antithetic simulation e®ectively increases the sample size by a factor of 2. This factor should be
taken into consideration if one intends to compare the simulation results with and without the
antithetic sample. We are only interested in comparing the antithetic Monte Carlo simulation with
and without the EMS correction. The antithetic simulation with the EMS can be easily performed
by applying the EMS correction to the antithetic sample. The results for Asian options are reported
in Table 3.

For Asian options, the patterns are similar to those for European options. The decrease in
Monte Carlo errors due to the use of the EMS is much larger for in-the-money short-maturity
options with a ratio of approximately 65. For Asian options, the use of the antithetic variable
technique produces large decreases in standard deviations. With the EMS correction added onto
the antithetic variable simulation, the additional improvement is clear as indicated by the ratios of
standard deviations reported in the last row of either panel.

4.2. The GARCH option pricing framework

In the GARCH option pricing framework of Duan (1995), the asset price has a form analogous
to equation (1) where the integrals are replaced by summations and the Brownian motion by the
standard normal random variable. In this section, we use the GARCH(1,1)-(in mean) model to
describe the daily asset return dynamic. According to Duan (1995), the dynamic under the locally
risk-neutralized probability measure Q is

ln
St+1

St
= r ¡

1

2
¾2t+1 + ¾t+1"t+1 (4.2)

¾
2
t+1 = ¯0 + ¯1¾

2
t + ¯2¾

2
t ("t ¡ ¸)2

"t+1jFt
Q
» N(0; 1)

where ¯0; ¯1; ¯2 are the GARCH(1,1) parameters, and ¸ is the unit risk premium (per unit of
standard deviation) parameter that de¯nes the conditional mean equation of the GARCH(1,1)-(in
mean) dynamic under the physical probability measure. By Duan (1995), the stationary variance
of the daily asset return under the locally risk-neutralized probability measure Q is ¯0[1 ¡ ¯1 ¡

¯2(1 + ¸2)]¡1, which is higher than ¯0(1¡ ¯1 ¡ ¯2)
¡1, the stationary variance under the physical

probability measure.
In our numerical study, we set the initial conditional variance at the stationary level under the

physical probability measure, i.e., ¾21 = ¯0(1 ¡ ¯1 ¡ ¯2)¡1. The crude Monte Carlo simulation is
conducted according to the GARCH dynamic under Q described above. The EMS is conducted
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by applying the EMS correction described in (9) to the simulated sample paths. For European
options, we use their Black-Scholes counterparts in the control-variate Monte Carlo simulation.
Following the practice in Duan (1995), the Black-Scholes price is computed using the stationary
variance ¯0(1 ¡ ¯1 ¡ ¯2)¡1 in the Black-Scholes closed-form formula. The results for European
call options are presented in Table 4. The error reduction due to the EMS is roughly the same as
those under the Black-Scholes framework reported in Table 2. The use of control variate simulation
reduces simulation error substantially. If one uses the EMS in conjunction with the control variate
simulation further improves the simulation e±ciency in a signi¯cant way. The improvement is
insensitive to the number of sample paths, either 1000 or 10000, as indicated by the numbers in the
two panels. As to the moneyness positions, the e±ciency gain is most pronounced for in-the-money
options. For out-of-the-money options, the e±ciency gain increases as the maturity increases.

For Asian options, we use the contract speci¯cation described in the previous subsection. To
conduct the control variate simulation, we have available the closed-form formula for geometric
average options developed by Ritchken et al (1993).7 The results in Table 5 again clearly show
the improvement due to the EMS. The patterns are the same as the ones for European options
reported in Table 4.

5. Conclusion

Asset prices are typically modeled as exponential (semi-)martingales. The prices of its derivative
contracts are often complex functionals that sometimes require the use of Monte Carlo simulation
to compute their values. Although arbitrary degree of accuracy can be obtained by simulation,
it often requires too many Monte Carlo repetitions. The Monte Carlo error can also cause the
price estimate to violate rational option pricing bounds which makes these price estimates non-
sensible. We propose a simple modi¯cation to the standard Monte Carlo simulation procedure.
This modi¯cation is referred to as the empirical martingale simulation (EMS) because it imposes
upon the simulated sample a martingale property. The EMS ensures that the price estimate by
simulation satis¯es rational option pricing bounds. Since the EMS reproduces a key feature of the
theoretical model in simulation, it yields a substantial reduction in Monte Carlo errors. The EMS
is applied to European and Asian call options under the Black-Scholes and GARCH frameworks
to study the e®ect of path-dependency in payo®s and/or asset price dynamics. Substantial error
reduction is obtained for all contracts under the two modeling approaches. The error reduction
is particularly pronounced for in- and at-the-money options. The e±ciency gain due to the EMS
appears to be a typical phenomenon.

The bene¯t of using the EMS goes beyond Monte Carlo error reduction. The Black-Scholes
formula is often used to compute implied volatility which is a means of comparing more complex
option pricing models for the options with di®erent strike prices and maturities. For example,
one may want to study the validity of a stochastic volatility option pricing model by comparing

7We use the formula by Ritchken et al (1993) as the control because the Asian option studied here are written on
the arithmetic average of discretely-sampled asset prices. This practice is similar to that of Kemna and Vorst (1990)

except that our use of the formula by Ritchken et al avoids the bias associated with the use of a formula that is based

on the geometric average of continuous prices.
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the implied volatilities computed from the market prices of exchange-traded options and their
corresponding model prices. In order to compute the implied volatility, the option price estimate
must satisfy rational option pricing bounds. To our knowledge, the EMS is the only Monte Carlo
simulation technique that can ensure the satisfaction of rational option pricing bounds.

6. Appendix

Proof of Proposition 1:

Consider the ith simulated sample path, [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]. The di®erence between Ŝi(tj) and
S¤i (tj ; n) is by a factor in the order of S0=Ŝ0(tj ; n). The strong law of large numbers assumption
ensures that [S¤i (t1; n); ¢ ¢ ¢; S

¤

i (tm; n)] and [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)] can be made arbitrarily close, almost
surely, for a large enough n. With the uniform continuity of f(¢), we have the following result. For
any " > 0, there exist ± > 0 and a large N such that for any n ¸ N , j[S¤i (t1; n); ¢ ¢ ¢; S

¤

i (tm; n)] ¡
[Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]j < ± almost surely, and jf [S¤i (t1; n); ¢ ¢ ¢; S

¤

i (tm; n)] ¡ f [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]j < "

almost surely. The uniform continuity assumption also ensures that ", ± and N are independent of
[Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]. Setting " arbitrarily small yields the desired result.2
Proof of Proposition 2:

Consider again the ith simulated sample path, [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]. Since S(tj) has a continuous
distribution for any tj , this sample path must land, almost surely, in one of the subsets in the ¯nite
collection used to de¯ne the generic uniform continuity. Let this subset be denoted by A. We follow
the same argument used in the proof for Proposition 1 to conclude the following: for any "A > 0,
there exist ±A > 0 and a large NA such that for any n ¸ NA, j[S¤i (t1; n); ¢ ¢ ¢; S

¤

i (tm; n)]¡ [Ŝi(t1); ¢ ¢
¢; Ŝi(tm)]j < ±A almost surely, and jf [S¤i (t1; n); ¢ ¢ ¢; S

¤

i (tm; n)] ¡ f [Ŝi(t1); ¢ ¢ ¢; Ŝi(tm)]j < "A almost
surely. Since the collection of subsets is ¯nite, the maxima for "A, ±A and NA over this collection
exist. Denote these maxima by "max, ±max and Nmax. Replacing "A, ±A and NA by "max, ±max and
Nmax and then setting "max arbitrarily small yield the desired result.2
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Table 1

European call options in the Black and Scholes framework. Percentage of bound

violations in a crude Monte Carlo simulation experiment with 1000 repetitions.

1000 sample paths 10,000 sample paths

S0=K t = 1 month t = 3 months t = 9 months t = 1 month t = 3 months t = 9 months

1.50 51% 51% 51% 48% 48% 46%

1.40 52 51 48 50 50 41

1.30 49 49 38 52 50 22

1.20 51 43 18 50 28 0

1.10 34 3 0 8 0 0

1.00 0 0 0 0 0 0

0.90 0 0 0 0 0 0

0.80 92 0 0 47 0 0

0.70 100 70 0 100 3 0

0.60 100 100 1 100 100 0

0.50 100 100 89 100 100 33

Parameters: S0 = 100, r = 0:10 (annualized) and ¾ = 0:20 (annualized).
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Table 2

European call options in the Black and Scholes framework.

1000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Theoretical 9.9117 2.7104 0.1116 11.8209 5.2498 1.2147 16.9270 10.7748 5.4842

Crude

mean 9.9110 2.7101 0.1124 11.8214 5.2496 1.2222 16.9289 10.7751 5.5070

std. (0.1745) (0.1202) (0.0226) (0.2861) (0.2232) (0.1080) (0.4833) (0.4288) (0.3179)

EMS

mean 9.9119 2.7106 0.1116 11.8221 5.2506 1.2162 16.9291 10.7776 5.4873

std. (0.0154) (0.0542) (0.0209) (0.0493) (0.0909) (0.0799) (0.0970) (0.1440) (0.1724)

Ratio of std.

Crude/EMS 11.3008 2.2176 1.0789 5.8051 2.4553 1.3514 4.9812 2.9785 1.8440

10,000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Theoretical 9.9117 2.7104 0.1116 11.8209 5.2498 1.2147 16.9270 10.7748 5.4842

Crude

mean 9.9121 2.7098 0.1114 11.8223 5.2491 1.2149 16.9301 10.7741 5.4845

std. (0.0553) (0.0360) (0.0070) (0.0908) (0.0669) (0.0328) (0.1537) (0.1290) (0.0956)

EMS

mean 9.9120 2.7096 0.1113 11.8219 5.2486 1.2146 16.9290 10.7735 5.4836

std. (0.0050) (0.0164) (0.0065) (0.0158) (0.0277) (0.0243) (0.0312) (0.0442) (0.0510)

Ratio of std.

Crude/EMS 11.0557 2.1987 1.0754 5.7363 2.4164 1.3529 4.9317 2.9190 1.8760

Crude: Crude Monte Carlo simulation.

EMS: Empirical martingale simulation.

Parameters: S0 = 100, r = 0:10 (annualized) and ¾ = 0:20 (annualized).

All results are based on a 1000 Monte Carlo experiment.
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Table 3

Asian call options in the Black and Scholes framework.

1000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.4420 1.5722 0.0017 10.1644 2.9432 0.1444 12.3611 5.8242 1.5106

std. (0.1027) (0.0676) (0.0019) (0.1727) (0.1227) (0.0264) (0.2886) (0.2268) (0.1186)

EMS

mean 9.4403 1.5687 0.0017 10.1577 2.9362 0.1435 12.3495 5.8093 1.5051

std. (0.0015) (0.0325) (0.0019) (0.0134) (0.0527) (0.0237) (0.0413) (0.0858) (0.0809)

AT

mean 9.4401 1.5696 0.0016 10.1575 2.9373 0.1445 12.3503 5.8121 1.5069

std. (0.0036) (0.0341) (0.0014) (0.0181) (0.0573) (0.0187) (0.0570) (0.1008) (0.0782)

EMS-AT

mean 9.4403 1.5688 0.0016 10.1579 2.9358 0.1442 12.3504 5.8092 1.5053

std. (0.0011) (0.0324) (0.0014) (0.0105) (0.0522) (0.0182) (0.0339) (0.0837) (0.0712)

Ratio of std.

Crude/EMS 66.6979 2.0795 1.0037 12.8909 2.3264 1.1107 6.9917 2.6427 1.4661

AT/EMS-AT 3.3457 1.0526 1.0060 1.7298 1.0976 1.0247 1.6831 1.2041 1.0971

10,000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.4415 1.5682 0.0016 10.1590 2.9337 0.1450 12.3520 5.8054 1.5086

std. (0.0313) (0.0222) (0.0006) (0.0542) (0.0378) (0.0084) (0.0879) (0.0670) (0.0381)

EMS

mean 9.4402 1.5681 0.0016 10.1582 2.9331 0.1450 12.3522 5.8047 1.5086

std. (0.0005) (0.0102) (0.0006) (0.0044) (0.0167) (0.0076) (0.0133) (0.0265) (0.0266)

AT

mean 9.4403 1.5681 0.0016 10.1583 2.9330 0.1450 12.3520 5.8049 1.5089

std. (0.0012) (0.0107) (0.0004) (0.0058) (0.0181) (0.0059) (0.0185) (0.0314) (0.0251)

EMS-AT

mean 9.4403 1.5681 0.0016 10.1583 2.9330 0.1449 12.3521 5.8048 1.5087

std. (0.0003) (0.0102) (0.0004) (0.0033) (0.0165) (0.0058) (0.0110) (0.0261) (0.0229)

Ratio of std.

Crude/EMS 65.7908 2.1663 1.0018 12.2413 2.2651 1.1044 6.5856 2.5300 1.4324

AT/EMS-AT 3.4158 1.0511 1.0013 1.7526 1.0957 1.0262 1.6805 1.2023 1.0960

Crude: Crude Monte Carlo simulation.

EMS: Empirical martingale simulation.

AT: Antithetic simulation.

EMS-AT: Antithetic empirical martingale simulation.

Parameters: S0 = 100, r = 0:10 (annualized) and ¾ = 0:20 (annualized).

All results are based on a 1000 Monte Carlo experiment.
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Table 4

European call options in the GARCH framework.

1000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.9315 2.5441 0.1158 11.7621 5.0233 1.0682 16.7665 10.4872 5.1266

std. (0.1613) (0.1138) (0.0285) (0.2702) (0.2123) (0.1060) (0.4803) (0.4127) (0.3043)

EMS

mean 9.9216 2.5381 0.1153 11.7548 5.0169 1.0633 16.7580 10.4724 5.1183

std. (0.0207) (0.0562) (0.0265) (0.0496) (0.0886) (0.0775) (0.0942) (0.1411) (0.1628)

CV

mean 9.9219 2.5369 0.1159 11.7542 5.0091 1.0655 16.7486 10.4620 5.1216

std. (0.0431) (0.0349) (0.0182) (0.0818) (0.0677) (0.0496) (0.1446) (0.1314) (0.1117)

EMS-CV

mean 9.9221 2.5363 0.1159 11.7581 5.0134 1.0657 16.7578 10.4665 5.1219

std. (0.0140) (0.0218) (0.0174) (0.0298) (0.0392) (0.0413) (0.0464) (0.0633) (0.0743)

Ratio of std.

Crude/EMS 7.7764 2.0238 1.0763 5.4493 2.3959 1.3675 5.0964 2.9254 1.8691

CV/EMS-CV 3.0688 1.6010 1.0490 2.7497 1.7277 1.2005 3.1206 2.0741 1.5044

10,000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.9231 2.5364 0.1164 11.7578 5.0104 1.0619 16.7528 10.4640 5.1197

std. (0.0495) (0.0360) (0.0094) (0.0861) (0.0634) (0.0335) (0.1427) (0.1261) (0.0958)

EMS

mean 9.9217 2.5361 0.1164 11.7568 5.0107 1.0622 16.7566 10.4639 5.1191

std. (0.0066) (0.0171) (0.0088) (0.0164) (0.0280) (0.0261) (0.0305) (0.0444) (0.0513)

CV

mean 9.9220 2.5358 0.1165 11.7578 5.0109 1.0616 16.7564 10.4638 5.1191

std. (0.0133) (0.0108) (0.0061) (0.0249) (0.0220) (0.0159) (0.0456) (0.0415) (0.0341)

EMS-CV

mean 9.9218 2.5360 0.1165 11.7575 5.0117 1.0618 16.7570 10.4647 5.1200

std. (0.0044) (0.0067) (0.0058) (0.0088) (0.0126) (0.0135) (0.0145) (0.0204) (0.0218)

Ratio of std.

Crude/EMS 7.4960 2.1047 1.0702 5.2549 2.2655 1.2850 4.6835 2.8417 1.8648

CV/EMS-CV 3.0347 1.6170 1.0388 2.8087 1.7387 1.1745 3.1437 2.0329 1.5620

EMS: Empirical martingale simulation.

CV: Control variate simulation.

EMS-CV: Control variate empirical martingale simulation.

Parameters: S0 = 100, r = 0:10 (annualized), ¯0 = 0:00001, ¯1 = 0:70, ¯2 = 0:20 and ¸ = 0:01.

All results are based on a 1000 Monte Carlo experiment.
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Table 5

Asian call options in the GARCH framework.

1000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.4468 1.4690 0.0070 10.1677 2.7930 0.1365 12.3077 5.6250 1.3501

std. (0.0980) (0.0653) (0.0062) (0.1627) (0.1190) (0.0298) (0.2722) (0.2210) (0.1139)

EMS

mean 9.4452 1.4657 0.0070 10.1627 2.7873 0.1358 12.3005 5.6143 1.3451

std. (0.0049) (0.0335) (0.0061) (0.0174) (0.0523) (0.0272) (0.0406) (0.0836) (0.0797)

CV

mean 9.4451 1.4649 0.0070 10.1619 2.7841 0.1369 12.2995 5.6072 1.3485

std. (0.0227) (0.0177) (0.0054) (0.0448) (0.0360) (0.0182) (0.0812) (0.0683) (0.0498)

EMS-CV

mean 9.4451 1.4648 0.0070 10.1634 2.7850 0.1370 12.3031 5.6103 1.3481

std. (0.0043) (0.0115) (0.0053) (0.0121) (0.0217) (0.0173) (0.0245) (0.0353) (0.0398)

Ratio of std.

Crude/EMS 19.9224 1.9479 1.0151 9.3353 2.2760 1.0949 6.7106 2.6418 1.4280

CV/EMS-CV 5.2531 1.5449 1.0153 3.6931 1.6585 1.0575 3.3105 1.9358 1.2522

10,000 sample paths

Maturity = 1 month Maturity = 3 months Maturity = 9 months

S0=K 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

Crude

mean 9.4464 1.4645 0.0071 10.1638 2.7838 0.1369 12.3020 5.6090 1.3442

std. (0.0296) (0.0215) (0.0020) (0.0512) (0.0368) (0.0097) (0.0842) (0.0650) (0.0360)

EMS

mean 9.4450 1.4646 0.0071 10.1628 2.7835 0.1369 12.3022 5.6089 1.3444

std. (0.0015) (0.0104) (0.0019) (0.0055) (0.0165) (0.0090) (0.0133) (0.0260) (0.0261)

CV

mean 9.4452 1.4642 0.0071 10.1633 2.7839 0.1368 12.3023 5.6086 1.3441

std. (0.0070) (0.0053) (0.0017) (0.0139) (0.0112) (0.0061) (0.0251) (0.0221) (0.0154)

EMS-CV

mean 9.4451 1.4643 0.0071 10.1630 2.7842 0.1368 12.3023 5.6091 1.3444

std. (0.0014) (0.0035) (0.0017) (0.0039) (0.0066) (0.0058) (0.0075) (0.0117) (0.0124)

Ratio of std.

Crude/EMS 19.3821 2.0732 1.0087 9.2653 2.2327 1.0812 6.3184 2.4944 1.3818

CV/EMS-CV 5.1603 1.5423 1.0091 3.6020 1.7009 1.0519 3.3290 1.8843 1.2460

EMS: Empirical martingale simulation.

CV: Control variate simulation.

EMS-CV: Control variate empirical martingale simulation.

Parameters: S0 = 100, r = 0:10 (annualized), ¯0 = 0:00001, ¯1 = 0:70, ¯2 = 0:20 and ¸ = 0:01.

All results are based on a 1000 Monte Carlo experiment.
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