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Abstract

This paper proposes an efficient approach to compute the prices of American style options
in the GARCH framework. Rubinstein’s (1998) Edgeworth tree idea is combined with the
analytical formulas for moments of the cumulative return under GARCH developed in Duan et
al. (1999, 2002) to yield a simple recombining binomial tree for option valuation in the GARCH
context. Since the resulting tree is univariate, the proposed approach represents a convenient
approximation of the bivariate GARCH system. Numerical analyses are used to demonstrate
the speed and accuracy of the proposed approximation.
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1 Introduction

Ever since its introduction by Engle (1982), ARCH (or the generalized version, GARCH) processes

have been found to describe well time-varying volatilities of financial asset returns. In Duan (1995)

and Kallsen and Taqqu (1998), theories have been developed for pricing derivative contracts using

this class of models. Numerical methods have also been developed to enable the valuation of

European and American style option prices. Heston and Nandi (2000) and Duan, Gauthier and

Simonato (1999) have developed (quasi-)analytical approaches for computing European style option

prices. For American options, Ritchken and Trevor (1999) and Duan and Simonato (2001) have

come up with a modified lattice approach and a Markov chain method, respectively. The existing

methods for pricing American options under GARCH are bivariate in nature. When compared

to the binomial lattice method commonly used to price options in the one-dimensional diffusion

framework, they are more intensive in both computing time and memory requirements. In many

situations, computing option values quickly is of paramount importance. As such, one may be

willing to compromise on the level of accuracy so as to gain computing speed and/or reduce memory

needs. This paper is about designing a one-dimensional lattice to approximate American option

prices under GARCH so as to take advantage of the computing speed and low memory requirements

of such a lattice.

Rubinstein (1998) developed a one-dimensional recombining binomial tree to price European

and American options under a general distribution function. His technique is based on the Edge-

worth expansion to obtain discretized risk-neutral probabilities for a distribution with known first

four moments. Extending the Edgeworth expansion idea of Jarrow and Rudd (1982), Rubinstein’s

Edgeworth tree can go beyond European options. For European options, the method’s performance

is solely determined by the quality of the Edgeworth expansion. There is an added complexity as-

sociated with American options, however. If a one-dimensional stochastic variable (i.e., asset price)

is not sufficient to describe the stochastic evolution of the asset price system, there will be some loss

of information by restricting the construction to the one-variable Edgeworth tree. The GARCH

model is one such example. The asset price dynamic under GARCH is governed by the price-

volatility pair, which can be viewed as a bivariate Markovian system. The lattice deduced from the
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terminal distribution of the asset price simply cannot replicate the GARCH system in its entirety.

In other words, there will be some loss of accuracy if one proceeds to apply Rubinstein’s Edgeworth

tree idea to the American option valuation under GARCH. Despite this theoretical limitation, the

Edgeworth tree method may still provide a reasonably accurate approximation for many practical

applications. We find in this paper that this is indeed the case.

Rubinstein’s Edgeworth tree technique can be operational as long as the first four moments

of the cumulative return under the risk-neutral measure are known even if the true risk-neutral

distribution is unknown. In the GARCH framework, the first four moments of the cumulative

return under the risk-neutral measure can be obtained analytically by using the results in Duan et

al. (1999, 2002). More specifically, analytical formulas to compute the first four moments of the

cumulative return have been developed for the LGARCH, NGARCH, GJR-GARCH and EGARCH

processes. In this paper, we combine these results with Rubinstein’s Edgeworth tree to obtain an

efficient method to approximate American option prices under GARCH. Although our approach

does not have the convergence property shared by the methods of Ritchken and Trevor (1999)

and Duan and Simonato (2001), it represents a practical alternative whenever computing time or

memory requirement becomes an issue.

2 The Edgeworth Binomial Tree in the GARCH Context

2.1 Edgeworth binomial tree

As shown in Jarrow and Rudd (1982), an Edgeworth expansion using the first four moments of

the risk-neutral asset distribution can be used to price European options because such options only

depend on the asset price distribution at one time point. In order to price American options, one

needs to describe the entire asset price path from the time of valuation to the maturity of the option

contract. Rubinstein’s (1998) method consists of using the Edgeworth expansion to approximate

the risk-neutral asset price distribution at the maturity and then deducing from it an internally

consistent binomial tree to describe the asset price evolution over the life of the option contract.

Rubinstein’s method consists of first constructing a tree that recombines to yield n + 1 nodes

after n time steps. At the last step, the underlying asset value at the jth node (j = 0, 1, ..., n), Sj ,

3



is set to be

Sj = s0 e
µτ+σ

√
τxj (1)

µ = r − 1
τ
ln

nX
j=0

Pje
σ
√
τxj (2)

where s0 is the initial asset price, r is the annual continuously compounded risk-free rate, τ is the

time to expiration of the option (in years), σ =
p
V ar(ρτ )/τ is the annualized volatility rate for the

cumulative asset return, ρτ ≡ ln (sτ/s0), and finally xj is a mean 0 and variance 1 random variable
with the corresponding probability distribution Pj . The probability distribution Pj is determined

by modifying the binomial distribution using the Edgeworth expansion up to the fourth moment

of ρτ . In contrast to the standard binomial lattice, the Edgeworth binomial tree need not have

a constant move size or probability. In fact, all asset values and probabilities before the terminal

time are deduced from the arbitrage-free principle. Finally, µ is used to ensure that the expected

risk-neutral asset return equals r, a risk-neutrality condition. Once the Edgeworth binomial lattice

is constructed, American option prices can be numerically computed by a backward recursion.

Appendix A shows how xj is created and how the skewness and kurtosis of ρτ are used to generate

Pj .

2.2 Analytical moments under GARCH

Analytical expressions for the first four moments of the cumulative return are already available in

the case of the LGARCH, NGARCH, GJR-GARCH and EGARCHmodels. If the asset’s conditional

expected return is specified to have a constant risk premium per unit of conditional standard

deviation, denoted by λ, and the return innovation is normally distributed conditionally under the

physical probability measure, the asset return dynamic with respect to the risk-neutral measure Q

can be characterized. Duan (1995) showed that

ln

µ
st+1
st

¶
= rp − 1

2
ht+1 +

p
ht+1²t+1, for t = 0, 1, 2, ... (3)

where

²t+1|Φt Q∼ N(0, 1), (4)
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ht is the conditional variance, Φt denotes the information set at time t, and rp is the one-period

risk-free rate (continuously compounded). If the length of one period is one calendar day, then

rp = r/365. Different versions of the GARCH model have their specific dynamic for ht. In the case

of the NGARCH model (Engle and Ng, 1993), the risk-neutral volatility dynamic becomes

ht+1 = β0 + ht[β1 + β2(²t − θ − λ)2]. (5)

For the GJR-GARCH model (Glosten et al., 1993), it becomes

ht+1 = β0 + ht[β1 + β2(²t − λ)2 + β3max(0,−²t + λ)2]. (6)

Similarly, the risk-neutral volatility dynamic for the EGARCH model (Nelson, 1991) is

ln(ht+1) = β0 + β1 ln(ht) + β4[|²t − λ|+ γ(²t − λ)]. (7)

Note that the LGARCH model (Bollerslev, 1986) can be viewed as a special case of the NGARCH

model by setting θ = 0 or a special case of the GJR-GARCH model by setting β3 = 0. The

parameters {βi : i = 1, 2, 3, 4} ,λ, θ and γ are parameters governing the volatility dynamic under
different GARCH specifications. These parameters are subject to different restrictions to ensure

that they are sensible specifications. For details, readers are referred to the respective papers that

developed these models. The NGARCH, GJR-GARCH and EGARCH forms of the GARCH model

are most popular because they permit the leverage effect, an important feature of financial asset

returns.

The analytical formulas for the moments of the cumulative return under these GARCH models

can be obtained by computing

EQ0

h
ρkT

i
= EQ0

ÃTrp − 1
2

TX
i=1

hi +
TX
i=1

p
hi²i

!k , for T ∈ {1, 2, ...} and k ∈ {1, 2, 3, 4} (8)

where T is the maturity expressed in numbers of discrete periods. Expanding the expression inside

the bracket and applying the expectation operator to the various terms obtains formulas with which

the required moments can be computed. The final expressions are algebraically cumbersome but

can be computed very quickly (in fractions of a second on a standard desktop computer). Interested

readers are referred to Duan et al. (1999, 2002) for the analytical expressions. Matlab programs
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Figure 1: Term structure of moments for the cumulative return under NGARCH

implementing these formulas are available upon request. To better appreciate the nature of these

moments, we have plotted them in Figure 1 using the NGARCH model with the parameter values:

rp = 0.05/365, β0 = 1e − 5, β1 = 0.7, β2 = 0.1, λ+ θ = 1.0, and h1 is set to its stationary level.
These moments are depicted as functions of maturity expressed in number of days1. As shown

in these graphs, the distribution of the cumulative return quickly drift away from normality as

maturity increases. This result is due to the stochastic mixture effect, a property possessed by

the GARCH model. The distribution eventually reverts back towards normality as maturity is

increasing. This result is tied to the central limit theorem. Slowness in the reversion to normality

has a great deal to do with the high volatility persistence, which is a typical feature of financial

data and is reflected in the chosen parameter values.

1In these graphs, the mean is defined as EQ
0 [ρT ] /T , the variance as V ar(ρT )/T, the skewness as E

Q
0

£
z3T
¤
and

the kurtosis as EQ0
£
z4T
¤
with zT =

³
ρT − EQ

0 [ρT ]
´
/
³
σ
√
T
´
.
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For options with short maturities, the prices obtained by the GARCH model will quickly devi-

ate from those obtained by the Black-Scholes model for which skewness and kurtosis equal 0 and

3, respectively. In the case of long-term options, the GARCH model will yield values different from

than those of the Black-Scholes model even though the standardized cumulative return tends to be

normally distributed. These differences in option values are due to the fact that, in the GARCH

framework, the appropriate variances for long-term options are different from the variances for

short-term options. In Figure 1, variance is increasing with maturity because we set the initial

conditional variance to the long-run average of one-period returns. If the initial variance is sub-

stantially lower than the average value, the relationship can be reversed. A clear message emerges

from these graphs; that is, if GARCH models are appropriate descriptions of the dynamic of the

stock price, the Black-Scholes formula will work better for long-term options. However, there will

likely be an under or overvaluation if one simply plugs historical volatility into the Black-Scholes

formula for long-term options.

3 A simulation analysis

In this section we present the results of a simulation study examining the precision of the proposed

method. Since our analysis indicates that the Edgeworth binomial tree has a similar performance

for the LGARCH, NGARCH, GJR-GARCH and EGARCH models, we only present the results

for the NGARCH option pricing model. The simulation study adopts an approach similar to that

of Broadie and Detemple (1996). A test pool of 500 American put options is simulated. For all

options, we assume that the initial underlying asset value, s0, is 100. Each option faces a different

parameter set, consisting of parameter values randomly selected from predetermined distributions,

independently from one another. The parameters are chosen from the following distributions: the

number of days to maturity is uniformly distributed between 30 and 270; the strike price, K, is

uniformly distributed between 70 and 130; r is uniformly distributed between 0 and 0.1 with a

probability of 0.8, and equals 0 with a probability of 0.2. The NGARCH parameter values are

drawn from the following distributions: β0 is uniformly distributed between 0 and 10
−4; β1 is

uniformly distributed between 0 and 1; β2 is uniformly distributed between 0 and 1; λ + θ is

uniformly distributed between 0 and 1; the initial conditional variance, h1, is uniformly distributed
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between 0.5 and 1.5 times the stationary variance under the risk-neutral probability measure Q.

The simulated GARCH parameter value sets that violate the normality reversion conditions given

in Duan et al. (1999) are discarded. Also imposed are ranges for skewness and kurtosis due to

the limitations of the Edgeworth expansion discussed in Rubinstein (1998). Specifically, we limit

the parameter sets that imply a skewness between −0.8 and 0.8 and a kurtosis between 3 and 5.5.
The Edgeworth binomial tree prices are computed using the number of steps equal to the maturity

(in number of days) of the option. This choice ensures that the number of early exercise points

permitted by the Edgeworth binomial tree coincides with the number of allowable exercise time

points under the daily GARCH model.

The benchmark prices in this study are obtained by the Markov chain method of Duan and

Simonato (2001) with 301 states for the underlying asset price and 101 states for the conditional

variance. We choose to use the Markov chain method to obtain the benchmark prices because (1)

it yields option prices that theoretically converge to the right values, and (2) the existing practical

Monte Carlo methods for American options are known to be biased downward with an unknown

magnitude. To gain some idea about the precision of the Markov chain method, we present in Table

1 the comparison of the European option prices obtained by the Markov chain with those obtained

using the 200, 000-path empirical martingale simulation method of Duan and Simonato (1998). In

almost all cases, the Markov chain prices are accurate within a penny relative to the corresponding

Monte Carlo prices.

We measure the aggregate relative pricing error for the test pool of American put options by a

root mean square error (rmse), defined as:

rmse =

vuut 1

m

mX
i=1

µ
Ci(b)−Ci

Ci

¶2
, (9)

where Ci is the i
th Markov chain price, Ci(b) is the i

th Edgeworth binomial tree price, and m is the

number of option prices in the test pool. Although our sampling procedure results in the pricing

of 500 options, we restrict the analysis to a subset of 333 options whose Markov chain prices are

greater than or equal to 0.50. This restriction avoids having a large pricing error due to a small

divider.
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3.1 Results

The test pool yields a rmse measure of 0.01816. It should be pointed out that an option price

obtained using an Edgeworth tree in the GARCH framework has an inherent approximation error

related to the use of a single stochastic variable to proxy a two-variable environment. This error is

fundamental and cannot be mitigated by increasing the number of steps in the lattice. The rmse

measure thus gives the expected loss in accuracy. The loss in accuracy is, however, compensated

by a substantial increase in computation speed. The gain is often by a factor greater than 100

when compared to the time required by the Markov chain method. We will document the gain in

computation time at the end of this section.

To better understand the source of pricing errors, we divide the test pools into options with

a high volatility persistence (β2

³
1+ (λ+ θ)2

´
+ β1 > 0.85) and a low volatility persistence

(β2

³
1+ (λ+ θ)2

´
+β1 ≤ 0.85). The rmse measures for these two cases become 0.0334 and 0.0161,

respectively. This suggests that the Edgeworth binomial tree is more accurate when the volatility

persistence is low. We also divide the test pool into in-the-money and out-of-the-money options

to obtain rmse measures of 0.0048 and 0.0489, respectively. A poorer performance for out-of-

the-money options was, to a large extent, expected because of the small divider effect. Finally, we

classify options according to the magnitude of the relative pricing error and present the correspond-

ing frequency of occurrence in Figure 2. The result indicates that 33% of the sample has a negligible

relative pricing error. There are only 3.5% of the sample has a relative pricing error greater than

5%. Large relative pricing errors are, in all cases, associated with deep out-of-the-money options,

which are options with a strike-to-asset-price ratio below 0.9.

In Tables 2 and 3, more detailed results with regards to the performance of the Edgeworth

binomial tree are presented. The Markov chain prices, with 301 states for the underlying asset

price and 101 states for the conditional variance, are again used as benchmarks. The results are

for two sets of parameters: {β0 = 0.00001, β1 = 0.7, β2 = 0.1, θ + λ = 0.2} and {β0 = 0.00001,
β1 = 0.8, β2 = 0.1, θ + λ = 0.2}. They respectively represent low and high levels of volatility

persistence. In each panel, the first set of numbers corresponds to the case where h1 is set equal to

the stationary variance, h∗. The second and third sets respectively correspond to the cases where

h1 is fixed at 20% above and below h∗. The risk-free interest rate is 5% per annum and the initial
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Figure 2: Figure 2. Frequency distribution of the relative pricing error

asset price is at $50. The results are presented for four different maturities: 10, 30, 90 and 270 days.

Finally, we consider three moneyness ratios (1.1, 1.0 and 0.9), defined as the strike-to-asset-price

ratio. For the first set of parameters, we obtain penny accuracy in almost all cases. For the second

set of parameters which correspond to a higher volatility persistence, the Edgeworth tree method

is less accurate. This is especially true for longer maturity options. Nevertheless, the pricing errors

in all cases are reasonably accurate relative to the magnitudes of the corresponding option prices.

To shed some light on computation times, we report the time taken by the Markov chain and

the Edgeworth tree methods (both coded in C) in computing an American option with 90 days to

maturity. The Edgeworth binomial tree takes approximately 0.06 seconds on a standard desktop

computer whereas the Markov chain with 201 states for the underlying asset price and 75 states for

the conditional variance takes about 8 seconds. For an option with 200 days to maturity, a Markov

chain of a larger dimension is required to achieve penny accuracy. In this case, the Edgeworth tree

takes about 0.12 seconds but the Markov chain with 301 states for the underlying asset price and

101 states for the conditional variance takes about 33 seconds. It is obvious that the Edgeworth

binomial tree should also be faster than the method of Ritchken and Trevor (1999), which is a
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trinomial lattice accompanied by vectors of option values, corresponding to different volatilities, at

all nodes.

4 Concluding remarks

The Edgeworth binomial tree is a fast method for computing American option prices when the

cumulative return is not normally distributed. In the case of the GARCH model, we have shown

that the Edgeworth binomial tree may be more desirable when computing speed is an important

consideration. As expected, the Edgeworth binomial tree contains an inherent approximation error

in the case of the GARCH model, which is simply due to the use of unique stochastic variable to

proxy two stochastic variables. The magnitude of the pricing errors, however, appear to be well

within the tolerance level for many applications. In short, the Edgeworth binomial tree adds to

our set of practical tools for valuing American options under GARCH.

A Edgeworth tree construction

The tree construction starts first by considering an n-step binomial distribution with n+1 possible

values denoted by yj =
[(2j)−n]√

n
for j = 0 to n and the associated probability bj = [n!/j!(n −

j)!](1/2)n. Given a pre-specified skewness and kurtosis, the binomial distribution is modified by

the Edgeworth expansion up to the fourth moment to yield:

fj =
£
1+ (1/6)ξ(y3j − 3yj) + (1/24)(κ− 3)(y4j − 6y2j + 3)

¤
bj

where ξ = EQ
£
z3τ
¤
is the skewness and κ = EQ

£
z4τ
¤
the kurtosis of the cumulative return for

the option’s maturity under the risk-neutral measure with zτ =
ρτ−EQ[ρτ ]

σ
√
τ

. Scaling is needed to

ensure that the probabilities sum up to one because the Edgeworth expansion only apporximates

a probability distribution. The scaling operation is

Pj =
fjP
j fj

.

The variable yj based on the probability Pj is no longer a binomial random variable and can be

standardized to have mean 0 and variance 1 as follows:

xj =
yj −M
V

11



with M =
P
j Pjyj and V

2 =
P
j Pj (yj −M)2. The variable xj is then used in equation (1) to

create the terminal asset price and the corresponding risk-neutral probability of a single path to

node j:

pj = Pj/[n!/j!(n− j)!].

Working backwards, the rest of the tree can be deduced easily. Denote by (pj, Sj) and (pj+1, Sj+1)

the probabilities and asset prices at two adjacent nodes where the subscript j and j + 1 indicate

the upper and lower branch. The backward recursion based on the arbitrage-free principle can be

used to find the price and probability pair, i.e., p and S, for the preceding node; that is,

p = pj + pj+1

S =

·
pj+1
p
Sj+1 +

pj
p
Sj

¸
exp(−r × τ/n)

where τ is the maturity of the option in years. It is clear that the induced asset price at the origin

equals the initial asset price, s0, because of equations (1) and (2).
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Table 1: The performance of the Markov chain method in pricing European options under NGARCH

β0 = 0.00001,β1 = 0.70, β2 = 0.10 and λ+ θ = 0.50

Maturity = 10 days Maturity = 30 days Maturity = 90 days Maturity = 270 days
K/S0 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

h1 = h∗ × 1.00
Monte Carlo 4.92 0.44 0.00 4.78 0.72 0.01 4.53 1.13 0.09 4.31 1.64 0.38
Markov Chain 4.92 0.44 0.00 4.78 0.72 0.01 4.53 1.13 0.09 4.31 1.64 0.38
h1 = h∗ × 1.20
Monte Carlo 4.92 0.46 0.00 4.78 0.73 0.01 4.54 1.14 0.09 4.31 1.64 0.39
Markov Chain 4.92 0.46 0.00 4.78 0.73 0.01 4.54 1.14 0.09 4.32 1.65 0.39
h1 = h∗ × 0.80
Monte Carlo 4.92 0.41 0.00 4.78 0.70 0.01 4.53 1.13 0.09 4.30 1.63 0.38
Markov Chain 4.92 0.41 0.00 4.78 0.70 0.01 4.53 1.12 0.08 4.30 1.63 0.38

Monte Carlo is the European option price by the Monte Carlo simulation with 200,000 sample paths. Markov Chain is the

European option price by the Markov Chain method with 301 states for the underlying asset and 101 states for the volatility.

Table 2: The performance of the Edgeworth binomial tree in pricing European and American
options under NGARCH (low persistence)

β0 = 0.00001,β1 = 0.70, β2 = 0.10 and λ+ θ = 0.50

Maturity = 10 days Maturity = 30 days Maturity = 90 days Maturity = 270 days
K/S0 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

h1 = h∗ × 1.00
Markov Chain Euro. 4.92 0.44 0.00 4.78 0.72 0.01 4.53 1.13 0.09 4.31 1.64 0.38
Edgeworth Euro. 4.92 0.43 0.00 4.78 0.72 0.01 4.53 1.14 0.09 4.31 1.64 0.38
Markov Chain Amer. 5.00 0.44 0.00 5.00 0.73 0.01 5.00 1.19 0.09 5.10 1.84 0.42
Edgeworth Amer. 5.00 0.43 0.00 5.00 0.73 0.01 5.00 1.19 0.09 5.08 1.82 0.41
h1 = h∗ × 1.20
Markov Chain Euro. 4.92 0.46 0.00 4.78 0.73 0.01 4.54 1.14 0.09 4.32 1.65 0.39
Edgeworth Euro. 4.92 0.44 0.00 4.78 0.73 0.01 4.54 1.14 0.09 4.31 1.64 0.39
Markov Chain Amer. 5.00 0.46 0.00 5.00 0.75 0.01 5.00 1.20 0.09 5.10 1.85 0.42
Edgeworth Amer. 5.00 0.45 0.00 5.00 0.75 0.01 5.00 1.20 0.10 5.08 1.83 0.42
h1 = h∗ × 0.80
Markov Chain Euro. 4.92 0.41 0.00 4.78 0.70 0.00 4.52 1.12 0.08 4.30 1.63 0.38
Edgeworth Euro. 4.92 0.41 0.00 4.78 0.71 0.01 4.53 1.13 0.09 4.30 1.63 0.38
Markov Chain Amer. 5.00 0.42 0.00 5.00 0.72 0.01 5.00 1.18 0.08 5.09 1.83 0.41
Edgeworth Amer. 5.00 0.41 0.00 5.00 0.72 0.01 5.00 1.18 0.09 5.08 1.82 0.41

Markov chain Euro. (Amer.) is the European (American) option price by the Markov chain method with 301 states for the

underlying asset and 101 states for the volatility. Edgeworth Euro. (Amer.) is the option price by the Edgeworth binomial tree

approach.
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Table 3: The performance of the Edgeworth binomial tree in pricing European and American
options under NGARCH (high persistence).

β0 = 0.00001,β1 = 0.80, β2 = 0.10 and λ+ θ = 0.50

Maturity = 10 days Maturity = 30 days Maturity = 90 days Maturity = 270 days
K/S0 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90 1.10 1.00 0.90

h1 = h∗ × 1.00
Markov Chain Euro. 4.93 0.68 0.00 4.85 1.13 0.08 4.98 1.85 0.42 5.51 2.87 1.20
Edgeworth Euro. 4.93 0.66 0.00 4.85 1.11 0.10 4.97 1.85 0.46 5.52 2.90 1.24
Markov Chain Amer. 5.00 0.68 0.01 5.00 1.14 0.09 5.21 1.90 0.43 6.01 3.07 1.27
Edgeworth Amer. 5.00 0.66 0.00 5.00 1.13 0.11 5.19 1.90 0.46 5.96 3.07 1.30
h1 = h∗ × 1.20
Markov Chain Euro. 4.93 0.73 0.01 4.86 1.18 0.10 5.00 1.88 0.44 5.54 2.89 1.22
Edgeworth Euro. 4.93 0.70 0.00 4.87 1.16 0.12 4.99 1.88 0.47 5.54 2.91 1.25
Markov Chain Amer. 5.00 0.73 0.01 5.00 1.19 0.10 5.23 1.94 0.45 6.03 3.10 1.29
Edgeworth Amer. 5.00 0.71 0.00 5.00 1.17 0.12 5.21 1.93 0.48 5.98 3.09 1.31
h1 = h∗ × 0.80
Markov Chain Euro. 4.92 0.63 0.00 4.84 1.08 0.07 4.95 1.82 0.40 5.50 2.85 1.19
Edgeworth Euro. 4.93 0.61 0.00 4.84 1.07 0.09 4.95 1.82 0.44 5.51 2.88 1.23
Markov Chain Amer. 5.00 0.63 0.00 5.00 1.09 0.07 5.18 1.87 0.41 5.98 3.05 1.25
Edgeworth Amer. 5.00 0.62 0.00 5.00 1.09 0.09 5.17 1.87 0.45 5.95 3.05 1.29

Markov chain Euro. (Amer.) is the European (American) option price by the Markov chain method with 301 states for the

underlying asset and 101 states for the volatility. Edgeworth Euro. (Amer.) is the option price by the Edgeworth binomial tree

approach.
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