89 research outputs found

    Nanostructuration d'or pour la biodétection plasmonique et la diffusion Raman exaltée de surface : réalisation, caractérisation et modélisation

    No full text
    This thesis is focused on gold nanostructuration on glass substrate in order to study and optimize their plasmonic properties for biosensing applications. The main goal was to demonstrate the feasibility of combining on a single biochip, Surface Plasmon Resonance Imaging (SPRI) and Surface Enhanced Raman Scattering (SERS) measurements. We have demonstrated that adding a gold film under the nanostructures was highly beneficial for a dual SPRI-SERS characterization. In order to optimize the geometry of the nanostructures and understand the various plasmonic modes, most of the samples were first made by electron beam lithography. Nanoimprinting assisted by UV (UV-NIL) was also developed during this thesis to manufacture samples in large quantities and reply to the future industrial needs for biosensing applications. Performances of these UV-NIL samples were compared with those produced by e-beam lithography. Diameters and periods of gold nanodisks range respectively from 40 nm to 300 nm and 80 nm to 600 nm, depending on the manufacturing technique used. In SERS, enhancement factor of 10^6 to 10^8 were obtained thanks to the presence of the continuous gold film under the nanodisks array. We found that this gain is a function of the thickness of the gold film, the excitation wavelength used and the nanostructures filling factor. In SPRI, we have demonstrated experimentally and theoretically the existence of a coupling between the propagating and localized plasmonic modes, resulting in a new hybrid mode, potentially more sensitive due to its high confinement. Numerical models confirm these results, taking into account the defects found in real samples (rounded edges, imperfect lateral side, adhesion layer). The whole work proposes a better understanding, both experimentally and theoretically, of the plasmonic properties at nanoscale of gold nanostructures with and without an underlying gold film. Moreover, a detailed study of the different technological processes helps to understand which steps significantly impact the plasmonic properties of the samples and their performance as a biosensor. Finally, these samples were characterized and validated on a bimodal instrument SPRI-SERS.Ce travail porte sur la rĂ©alisation de nanostructures d'or sur substrat de verre afin d’en Ă©tudier les propriĂ©tĂ©s plasmoniques et de les optimiser pour des applications dans le domaine des biocapteurs. L'objectif principal a Ă©tĂ© de dĂ©montrer la faisabilitĂ© de combiner sur une mĂȘme biopuce, les biocapteurs Ă  rĂ©sonance de plasmon de surface propagatif (SPR) et ceux basĂ©s sur la diffusion Raman exaltĂ©e de surface (SERS). Nous montrons que la prĂ©sence d’un film d’or sous les nanostructures est trĂšs favorable pour une double caractĂ©risation SPR-SERS. Afin d’étudier plus en dĂ©tails les couplages entre les diffĂ©rents modes plasmoniques existants dans ces substrats et ainsi pouvoir dĂ©terminer la structure optimale, l’essentiel des Ă©chantillons a Ă©tĂ© rĂ©alisĂ© par lithographie Ă©lectronique. La nanoimpression assistĂ©e par UV (UV-NIL) a aussi Ă©tĂ© dĂ©veloppĂ© au cours de cette thĂšse afin de rĂ©aliser un nombre important d'Ă©chantillons et rĂ©pondre aux futurs besoins de l'industrie des biocapteurs. Les performances de ces Ă©chantillons rĂ©alisĂ©s par UV-NIL ont Ă©tĂ© comparĂ©es avec ceux fabriquĂ©s par lithographie Ă©lectronique. Les diamĂštres des nanodisques d'or varient de 40 nm Ă  300 nm et les pĂ©riodes de 80 nm Ă  600 nm en fonction de la technique de fabrication. En SERS, des facteurs d’exaltation de 10^6 Ă  10^8 ont Ă©tĂ© obtenus grĂące Ă  la prĂ©sence du film d’or continu sous le rĂ©seau de nanodisques. Ce gain est fonction de l’épaisseur du film d’or, de la longueur d’onde d’excitation utilisĂ©e et du taux de remplissage des nanostructures. En SPR, nous avons dĂ©montrĂ© expĂ©rimentalement et thĂ©oriquement la possibilitĂ© de couplage entre les modes localisĂ©s et propagatifs donnant lieu Ă  un nouveau mode hybride, potentiellement plus sensible car plus confinĂ©. Les calculs numĂ©riques dĂ©veloppĂ©s pour simuler le comportement de structures rĂ©elles (prĂ©sence d’arrondi, de flanc ou de couche d’accroche) confirment les rĂ©sultats obtenus. L’ensemble de ce travail a permis de maniĂšre expĂ©rimentale et thĂ©orique d’apporter une meilleure comprĂ©hension des propriĂ©tĂ©s plasmoniques aux Ă©chelles nanomĂ©triques sur des structures constituĂ©es de rĂ©seaux de nanostructures d'or, notamment sur film d’or. Par ailleurs, une Ă©tude prĂ©cise des diffĂ©rentes Ă©tapes technologiques a permis de comprendre quels Ă©lĂ©ments impactent significativement les propriĂ©tĂ©s plasmoniques des Ă©chantillons et donc amĂ©liorent ou dĂ©gradent les performances de ces substrats en tant que biocapteur. Au final, les Ă©chantillons rĂ©alisĂ©s ont Ă©tĂ© testĂ©s et validĂ©s en tant que biocapteur au sein d'un appareil bimodal SPR-SERS

    Gold nanostructuration for plasmonic biosensors and Surface Enhanced Raman Scattering : fabrication, characterization and numerical simulation

    No full text
    Ce travail porte sur la rĂ©alisation de nanostructures d'or sur substrat de verre afin d’en Ă©tudier les propriĂ©tĂ©s plasmoniques et de les optimiser pour des applications dans le domaine des biocapteurs. L'objectif principal a Ă©tĂ© de dĂ©montrer la faisabilitĂ© de combiner sur une mĂȘme biopuce, les biocapteurs Ă  rĂ©sonance de plasmon de surface propagatif (SPR) et ceux basĂ©s sur la diffusion Raman exaltĂ©e de surface (SERS). Nous montrons que la prĂ©sence d’un film d’or sous les nanostructures est trĂšs favorable pour une double caractĂ©risation SPR-SERS. Afin d’étudier plus en dĂ©tails les couplages entre les diffĂ©rents modes plasmoniques existants dans ces substrats et ainsi pouvoir dĂ©terminer la structure optimale, l’essentiel des Ă©chantillons a Ă©tĂ© rĂ©alisĂ© par lithographie Ă©lectronique. La nanoimpression assistĂ©e par UV (UV-NIL) a aussi Ă©tĂ© dĂ©veloppĂ© au cours de cette thĂšse afin de rĂ©aliser un nombre important d'Ă©chantillons et rĂ©pondre aux futurs besoins de l'industrie des biocapteurs. Les performances de ces Ă©chantillons rĂ©alisĂ©s par UV-NIL ont Ă©tĂ© comparĂ©es avec ceux fabriquĂ©s par lithographie Ă©lectronique. Les diamĂštres des nanodisques d'or varient de 40 nm Ă  300 nm et les pĂ©riodes de 80 nm Ă  600 nm en fonction de la technique de fabrication. En SERS, des facteurs d’exaltation de 10^6 Ă  10^8 ont Ă©tĂ© obtenus grĂące Ă  la prĂ©sence du film d’or continu sous le rĂ©seau de nanodisques. Ce gain est fonction de l’épaisseur du film d’or, de la longueur d’onde d’excitation utilisĂ©e et du taux de remplissage des nanostructures. En SPR, nous avons dĂ©montrĂ© expĂ©rimentalement et thĂ©oriquement la possibilitĂ© de couplage entre les modes localisĂ©s et propagatifs donnant lieu Ă  un nouveau mode hybride, potentiellement plus sensible car plus confinĂ©. Les calculs numĂ©riques dĂ©veloppĂ©s pour simuler le comportement de structures rĂ©elles (prĂ©sence d’arrondi, de flanc ou de couche d’accroche) confirment les rĂ©sultats obtenus. L’ensemble de ce travail a permis de maniĂšre expĂ©rimentale et thĂ©orique d’apporter une meilleure comprĂ©hension des propriĂ©tĂ©s plasmoniques aux Ă©chelles nanomĂ©triques sur des structures constituĂ©es de rĂ©seaux de nanostructures d'or, notamment sur film d’or. Par ailleurs, une Ă©tude prĂ©cise des diffĂ©rentes Ă©tapes technologiques a permis de comprendre quels Ă©lĂ©ments impactent significativement les propriĂ©tĂ©s plasmoniques des Ă©chantillons et donc amĂ©liorent ou dĂ©gradent les performances de ces substrats en tant que biocapteur. Au final, les Ă©chantillons rĂ©alisĂ©s ont Ă©tĂ© testĂ©s et validĂ©s en tant que biocapteur au sein d'un appareil bimodal SPR-SERS.This thesis is focused on gold nanostructuration on glass substrate in order to study and optimize their plasmonic properties for biosensing applications. The main goal was to demonstrate the feasibility of combining on a single biochip, Surface Plasmon Resonance Imaging (SPRI) and Surface Enhanced Raman Scattering (SERS) measurements. We have demonstrated that adding a gold film under the nanostructures was highly beneficial for a dual SPRI-SERS characterization. In order to optimize the geometry of the nanostructures and understand the various plasmonic modes, most of the samples were first made by electron beam lithography. Nanoimprinting assisted by UV (UV-NIL) was also developed during this thesis to manufacture samples in large quantities and reply to the future industrial needs for biosensing applications. Performances of these UV-NIL samples were compared with those produced by e-beam lithography. Diameters and periods of gold nanodisks range respectively from 40 nm to 300 nm and 80 nm to 600 nm, depending on the manufacturing technique used. In SERS, enhancement factor of 10^6 to 10^8 were obtained thanks to the presence of the continuous gold film under the nanodisks array. We found that this gain is a function of the thickness of the gold film, the excitation wavelength used and the nanostructures filling factor. In SPRI, we have demonstrated experimentally and theoretically the existence of a coupling between the propagating and localized plasmonic modes, resulting in a new hybrid mode, potentially more sensitive due to its high confinement. Numerical models confirm these results, taking into account the defects found in real samples (rounded edges, imperfect lateral side, adhesion layer). The whole work proposes a better understanding, both experimentally and theoretically, of the plasmonic properties at nanoscale of gold nanostructures with and without an underlying gold film. Moreover, a detailed study of the different technological processes helps to understand which steps significantly impact the plasmonic properties of the samples and their performance as a biosensor. Finally, these samples were characterized and validated on a bimodal instrument SPRI-SERS

    An Introduction to Plasmonics

    No full text
    The book is intended for academia: university, college and engineering schools. Specially suited for graduate students in physics, materials science or chemistry. Also useful for PhD students and researchers entering the field of plasmonics as well as undergraduate courses in physics and electromagnetism.International audienc

    Transmission and reflection characteristics of metal-coated optical fiber tip pairs

    No full text
    The optical transmission and reflection in between two metalized optical fiber tips is studied in the optical near-field and far-field domains. In addition to aluminum-coated tips for near-field scanning optical microscopy (NSOM), specifically developed gold-coated fiber tips cut by focused ion beam are investigated. Transverse transmission maps of subwavelength width clearly indicate optical near-field coupling between the tips for short tip distances and become essentially Gaussian-shaped for larger distances in the far-field regime. Moreover, concentric reflection fringes observed for NSOM-type tips illustrate the influence of the receiving fiber tip on the emission pattern of the source tip. © 2013 Optical Society of America OCIS codes: (350.3950) Micro-optics; (350.4238) Nanophotonics and photonic crystals; (180.4243) Near-field microscopy

    Low-cost SERS substrates composed of hybrid nanoskittles for a highly sensitive sensing of chemical molecules

    No full text
    International audienceIn this paper, we report on the low-cost and quick fabrication at the 4-in. wafer-scale of hybrid nanoskittles for a highly sensitive detection of chemical molecules. This quick and low-cost fabrication is achieved by using the native oxide layer as a physical etch mask coupled to an evaporation of a gold layer. The hybrid nanoskittles obtained with this technique are disordered on the 4-in. wafer of Si, and a good definition of nanoskittles and a good reproducibility of SERS signal are obtained on the whole wafer. Moreover, we studied experimentally the sensitivity of these Au/Si nanoskittles for SERS sensing. Finally, enhancement factors in the range of 10 7 − 1.1 × 10 8 were found for the detection of thiophenol molecules with hybrid nanoskittles
    • 

    corecore