11 research outputs found

    Titania-doped tantala/silica coatings for gravitational-wave detection

    Get PDF
    Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO2 to Ta2O5 in Ta2O5/SiO2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO2-doped Ta2O5/SiO2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors

    Low loss coatings for the VIRGO large mirrors

    Get PDF
    présentée par L. PinardThe goal of the VIRGO program is to build a giant Michelson type interferometer (3 kilometer long arms) to detect gravitational waves. Large optical components (350 mm in diameter), having extremely low loss at 1064 nm, are needed. Today, the Ion beam Sputtering is the only deposition technique able to produce optical components with such performances. Consequently, a large ion beam sputtering deposition system was built to coat large optics up to 700 mm in diameter. The performances of this coater are described in term of layer uniformity on large scale and optical losses (absorption and scattering characterization). The VIRGO interferometer needs six main mirrors. The first set was ready in June 2002 and its installation is in progress on the VIRGO site (Italy). The optical performances of this first set are discussed. The requirements at 1064 nm are all satisfied. Indeed, the absorption level is close to 1 ppm (part per million), the scattering is lower than 5 ppm and the R.M.S. wavefront of these optics is lower than 8 nm on 150 mm in diameter. Finally, some solutions are proposed to further improve these performances, especially the absorption level (lower than 0.1 ppm) and the mechanical quality factor Q of the mirrors (thermal noise reduction)

    Étude et réalisation d'empilements multicouches sur des optiques asphériques de grandes dimensions pour des applications en lithographie extrême U.V.

    No full text
    La réalisation d optiques de grandes dimensions est un élément clé à la réussite de la lithographie Extrême-Ultraviolet à 13,5 nm. Leur intégration dans les appareils de production doit permettre d acheminer un flux lumineux intense de la source jusqu au wafer et ainsi d augmenter la productivité. Nous avons étudié et développé des systèmes multicouches à base de molybdène et silicium. Leurs structures ont été étudiées par réflectométrie des rayons X et leurs performances mesurées à 13,5 nm sous rayonnement synchrotron. Les résultats ont révélé une réflectivité à 13,5 nm limitée principalement à cause de la faible qualité des interfaces due à l inter-diffusion des 2 matériaux. Nous avons aussi porté une attention particulière au traitement de substrats asphériques de grandes dimensions. Nous avons notamment utilisé des techniques de masquage permettant de contrôler les épaisseurs déposées sur des diamètres de près de 500 mm et malgré des flèches proches de 100 mmThe development of large optics is a crucial point for the success of the EUV lithography at 13.5 nm. The integration of large collectors into steppers allows a gain in the collecting beam and thus improves the throughput. We have studied and developed reflecting molybdenum and silicon multilayers at 13.5 nm. Structures were analyzed using grazing incidence reflectometry and performances were measured under Synchrotron radiation at operating wavelength. The diffusion observed between the two materials at each interface severely reduces the total reflectivity at 13.5 nm. We have also studied coatings on large aspherical substrates. To control the gradient profile coatings on large concave collectors ( clear aperture of 500 mm and sag about 100 mm), we have used with success the masking techniqueLYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Amorphous semiconductor thin films characterization by nuclear microanalysis

    No full text
    International audienceA review is presented summarizing the specific nuclear microanalysis methods applied in our laboratory to study amorphous semiconductor thin films. For backscattering, ~3 MeV Li ions are applicable when depth resolution and sensitivity are required while up to 8 MeV a-particles allow larger depths to be probed and elemental interferences to be solved. These features are predominant for diffusion studies between metal electrodes and chalcogenide films. On the other hand hydrogen profiling using the 1H(15N, αγ) resonant nuclear reactions is described and analytical problems associated with its use are discussed. Applications to the elaboration conditions of hydrogenated (a)Si is developed
    corecore