29 research outputs found

    The PAAD/PYRIN-Family Protein ASC Is a Dual Regulator of a Conserved Step in Nuclear Factor κB Activation Pathways

    Get PDF
    Apoptosis-associated speck-like protein containing a Caspase recruitment domain (ASC) belongs to a large family of proteins that contain a Pyrin, AIM, ASC, and death domain-like (PAAD) domain (also known as PYRIN, DAPIN, Pyk). Recent data have suggested that ASC functions as an adaptor protein linking various PAAD-family proteins to pathways involved in nuclear factor (NF)-κB and pro-Caspase-1 activation. We present evidence here that the role of ASC in modulating NF-κB activation pathways is much broader than previously suspected, as it can either inhibit or activate NF-κB, depending on cellular context. While coexpression of ASC with certain PAAD-family proteins such as Pyrin and Cryopyrin increases NF-κB activity, ASC has an inhibitory influence on NF-κB activation by various proinflammatory stimuli, including tumor necrosis factor (TNF)α, interleukin 1β, and lipopolysaccharide (LPS). Elevations in ASC protein levels or of the PAAD domain of ASC suppressed activation of IκB kinases in cells exposed to pro-inflammatory stimuli. Conversely, reducing endogenous levels of ASC using siRNA enhanced TNF- and LPS-induced degradation of the IKK substrate, IκBα. Our findings suggest that ASC modulates diverse NF-κB induction pathways by acting upon the IKK complex, implying a broad role for this and similar proteins containing PAAD domains in regulation of inflammatory responses

    JAK2 Exon 14 Deletion in Patients with Chronic Myeloproliferative Neoplasms

    Get PDF
    BACKGROUND: The JAK2 V617F mutation in exon 14 is the most common mutation in chronic myeloproliferative neoplasms (MPNs); deletion of the entire exon 14 is rarely detected. In our previous study of >10,000 samples from patients with suspected MPNs tested for JAK2 mutations by reverse transcription-PCR (RT-PCR) with direct sequencing, complete deletion of exon 14 (Deltaexon14) constituted <1% of JAK2 mutations. This appears to be an alternative splicing mutation, not detectable with DNA-based testing. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the possibility that MPN patients may express the JAK2 Deltaexon14 at low levels (<15% of total transcript) not routinely detectable by RT-PCR with direct sequencing. Using a sensitive RT-PCR-based fluorescent fragment analysis method to quantify JAK2 Deltaexon14 mRNA expression relative to wild-type, we tested 61 patients with confirmed MPNs, 183 with suspected MPNs (93 V617F-positive, 90 V617F-negative), and 46 healthy control subjects. The Deltaexon14 variant was detected in 9 of the 61 (15%) confirmed MPN patients, accounting for 3.96% to 33.85% (mean = 12.04%) of total JAK2 transcript. This variant was also detected in 51 of the 183 patients with suspected MPNs (27%), including 20 of the 93 (22%) with V617F (mean [range] expression = 5.41% [2.13%-26.22%]) and 31 of the 90 (34%) without V617F (mean [range] expression = 3.88% [2.08%-12.22%]). Immunoprecipitation studies demonstrated that patients expressing Deltaexon14 mRNA expressed a corresponding truncated JAK2 protein. The Deltaexon14 variant was not detected in the 46 control subjects. CONCLUSIONS/SIGNIFICANCE: These data suggest that expression of the JAK2 Deltaexon14 splice variant, leading to a truncated JAK2 protein, is common in patients with MPNs. This alternatively spliced transcript appears to be more frequent in MPN patients without V617F mutation, in whom it might contribute to leukemogenesis. This mutation is missed if DNA rather than RNA is used for testing

    Rôle de la petite protéine de stress HSP27 dans l'apopotose et la tumorigénèse

    No full text
    Les protéines de choc thermique,[ou] protéines de stress, ont été identifiées [pour] leur capacité à protéger la cellule contre un certain nombre d'agressions. La petite protéine de stress HSP27...[a un] effet anti-apoptotique...démontré. Cet effet s'exerce vis-à-vis de stimuli très variés, notamment...vis-àvis de médicaments cytotoxiques.Nous avons étudié les mécanismes moléculaires de l'effet anti-apoptotique de la protéine HSP27 dans la lignée leucémique humaine U937, en utilisant l'étoposide, un médicament cytotoxique couramment utilisé en chimiohthérapie, comme stimulus apoptotique. Nous avons d'abord montré que l'effet anti-apoptotique...s'exerçait en aval de la mitochondrie et en amont de l'activation de la caspase-9. Puis, nous avons prouvé que cet effet était la conséquence d'une interaction directe rt spécifique d'HSP27 avec le cytochrome c dans le cytosol...DIJON-BU Médecine Pharmacie (212312103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Mice lacking bi-1 gene show accelerated liver regeneration

    No full text
    El pdf del artículo es la versión pre-print.-- et al.The liver has enormous regenerative capacity such that, after partial hepatectomy, hepatocytes rapidly replicate to restore liver mass, thus providing a context for studying in vivo mechanisms of cell growth regulation. Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death. Interestingly, the BI-1 protein has been shown to regulate Ca2+ handling by the ER similar to antiapoptotic Bcl-2 family proteins. Effects on cell cycle entry by Bcl-2 family proteins have been described, prompting us to explore whether bi-1–deficient mice display alterations in the in vivo regulation of cell cycle entry using a model of liver regeneration. Accordingly, we compared bi-1+/+ and bi-1−/− mice subjected to partial hepatectomy with respect to the kinetics of liver regeneration and molecular events associated with hepatocyte proliferation. We found that bi-1 deficiency accelerates liver regeneration after partial hepatectomy. Regenerating hepatocytes in bi-1−/− mice enter cell cycle faster, as documented by more rapid incorporation of deoxynucleotides, associated with earlier increases in cyclin D1, cyclin D3, cyclin-dependent kinase (Cdk) 2, and Cdk4 protein levels, more rapid hyperphosphorylation of retinoblastoma protein, and faster degradation of p27Kip1. Dephosphorylation and nuclear translocation of nuclear factor of activated T cells 1 (NFAT1), a substrate of the Ca2+-sensitive phosphatase calcineurin, were also accelerated following partial hepatectomy in BI-1–deficient hepatocytes. These findings therefore reveal additional similarities between BI-1 and Bcl-2 family proteins, showing a role for BI-1 in regulating cell proliferation in vivo, in addition to its previously described actions as a regulator of cell survival.Grant support: California Breast Cancer Research Program, Fondation pour La Recherche Medicale, Philippe Fondation, and NIH grant AG15393.Peer reviewe

    Selective inhibition of apoptosis by TPA-induced differentiation of U937 leukemic cells

    No full text
    International audienceU937 leukemic cells treated for 24 h with 16 nM 12-O-tetradecanoylphorbol 13-acetate (TPA), that induces their macrophagic terminal differentiation, become resistant to etoposide-induced apoptosis. Exposure of undifferentiated U937 cells to 50 microM etoposide for 6 h, that triggers apoptosis in 80% cells, activates procaspase-2L, -3 and -8, induces the mitochondrial release of cytochrome c and decreases Mcl-1 expression without modifying Bcl-2, Bcl-xL and Bax protein levels. All these events are inhibited in TPA-differentiated U937 cells that are also resistant to vinblastine-induced and Fas-mediated cell death. Interestingly, these cells are not inherently resistant to apoptosis induction. Exposure of TPA-differentiated U937 cells to 0.8 microg/ml cycloheximide for 24 h, that triggers apoptosis in 50% cells, activates procaspase-2L, -3 and -8, induces the mitochondrial release of cytochrome c and decreases Bcl-xL expression without modifying Bcl-2, Mcl-1 and Bax protein levels. All these events are not observed in undifferentiated cells treated in similar conditions. These results indicate that the apoptotic pathway that involves the release of cytochrome c from mitochondria and the cleavage of procaspases remains functional in TPA-differentiated cells
    corecore