211 research outputs found

    Méthodes itératives pour la résolution, par éléments finis, du problème de stokes non linéaire

    Get PDF
    Équations de la physique -- Équations de la mécanique des fluides -- Modèles pour la viscosité -- Méthode des éléments finis -- Formulation variationnelle des équations de Stokes -- Linéarisation (méthode de Newton) -- Discrétisation du problème de Stokes -- Assemblage de la matrice globale -- Résolution du système global -- Méthode d'Uzawa

    Modeling and Simulation of Suction Blow Molding Process for Producing Curved Ducts

    Get PDF
    During suction blow molding process, the extruded parison undergoes twisting deformation within the mold cavity, as the air drawing flow around the deforming parison exerts non-uniform shear stresses on its surface. This research is devoted in developing a fluid-structure interaction model for predicting parison deformation during suction blow molding process, with a specific emphasis on the suction stage. A fluid flow model, based on Hele-Shaw approximations, is formulated to simulate the air drag force exerted on the parison surface. The rheology of the polymer during suction is assumed to obey the K-BKZ integral viscoelastic model. The numerical results of this study allowed identifying a clear correlation between the twisting deformation undergone by the parison during the suction stage, also observed experimentally and the design parameters, namely, the air suction speed, the geometry of the duct mold cavity, and the parison/mold eccentricity

    Development of a Thermomechanical Model for Prediction of Residual Stress during Laser Powder-Bed Fusion: Evaluation of Inherent Strain Approach

    Get PDF
    The build-up of residual stresses in a part during laser powder-bed fusion (LPBF) provides a significant limitation to the adoption of this process. These residual stresses may cause a part to fail during a build or fall outside the specified tolerances after fabrication. Defectfree production of metallic parts using LPBF requires process optimization, as a crucial step, for effective usage of the process. Development of a numerical model to accurately predict the induced residual stresses and distortion during the LPBF process is of great interest as it allows to effectively investigate the influence of processing parameters on the quality of the parts. In this work, we developed a novel high-fidelity finite element (FE) model based on the inherent strain (local-global) approach to simulate the build process and calculate the residual stress and distortion for Hastelloy X specimens built with a continuous scan strategy. Conclusions from the thermomechanical simulations showed good agreement with X-ray diffraction measurements and 3D scanning data used to determine the residual stresses and distortions in the parts

    POD-Galerkin reduced-order models for real-time surgical simulation

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Test-retest reliability of diffusion measures extracted along white matter language fiber bundles using HARDI-based tractography

    Get PDF
    High angular resolution diffusion imaging (HARDI)-based tractography has been increasingly used in longitudinal studies on white matter macro- and micro-structural changes in the language network during language acquisition and in language impairments. However, test-retest reliability measurements are essential to ascertain that the longitudinal variations observed are not related to data processing. The aims of this study were to determine the reproducibility of the reconstruction of major white matter fiber bundles of the language network using anatomically constrained probabilistic tractography with constrained spherical deconvolution based on HARDI data, as well as to assess the test-retest reliability of diffusion measures extracted along them. Eighteen right-handed participants were scanned twice, one week apart. The arcuate, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculi were reconstructed in the left and right hemispheres and the following diffusion measures were extracted along each tract: fractional anisotropy, mean, axial, and radial diffusivity, number of fiber orientations, mean length of streamlines, and volume. All fiber bundles showed good morphological overlap between the two scanning timepoints and the test-retest reliability of all diffusion measures in most fiber bundles was good to excellent. We thus propose a fairly simple, but robust, HARDI-based tractography pipeline reliable for the longitudinal study of white matter language fiber bundles, which increases its potential applicability to research on the neurobiological mechanisms supporting language

    Sleep spindles are resilient to extensive white matter deterioration

    Full text link
    Sleep spindles are an essential part of non-rapid eye movement sleep, notably involved in sleep consolidation, cognition, learning and memory. These oscillatory waves depend on an interaction loop between the thalamus and the cortex, which relies on a structural backbone of thalamo-cortical white matter tracts. It is still largely unknown if the brain can properly produce sleep spindles when it underwent extensive white matter deterioration in these tracts, and we hypothesized that it would affect sleep spindle generation and morphology. We tested this hypothesis with chronic moderate to severe traumatic brain injury (n ÂĽ 23; 30.5 6 11.1 years old; 17 m/6f), a unique human model of extensive white matter deterioration, and a healthy control group (n ÂĽ 27; 30.3 6 13.4 years old; 21m/6f). Sleep spindles were analysed on a full night of polysomnography over the frontal, central and parietal brain regions, and we measured their density, morphology and sigma-band power. White matter deterioration was quantified using diffusion-weighted MRI, with which we performed both whole-brain voxel-wise analysis (Tract-Based Spatial Statistics) and probabilistic tractography (with High Angular Resolution Diffusion Imaging) to target the thalamo-cortical tracts. Group differences were assessed for all variables and correlations were performed separately in each group, corrected for age and multiple comparisons. Surprisingly, although extensive white matter damage across the brain including all thalamo-cortical tracts was evident in the brain-injured group, sleep spindles remained completely undisrupted when compared to a healthy control group. In addition, almost all sleep spindle characteristics were not associated with the degree of white matter deterioration in the braininjured group, except that more white matter deterioration correlated with lower spindle frequency over the frontal regions. This study highlights the resilience of sleep spindles to the deterioration of all white matter tracts critical to their existence, as they conserve normal density during non-rapid eye movement sleep with mostly unaltered morphology. We show that even with such a severe traumatic event, the brain has the ability to adapt or to withstand alterations in order to conserve normal sleep spindles

    Test-Retest Reliability of Diffusion Measures Extracted Along White Matter Language Fiber Bundles Using HARDI-Based Tractography

    Get PDF
    High angular resolution diffusion imaging (HARDI)-based tractography has been increasingly used in longitudinal studies on white matter macro- and micro-structural changes in the language network during language acquisition and in language impairments. However, test-retest reliability measurements are essential to ascertain that the longitudinal variations observed are not related to data processing. The aims of this study were to determine the reproducibility of the reconstruction of major white matter fiber bundles of the language network using anatomically constrained probabilistic tractography with constrained spherical deconvolution based on HARDI data, as well as to assess the test-retest reliability of diffusion measures extracted along them. Eighteen right-handed participants were scanned twice, one week apart. The arcuate, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculi were reconstructed in the left and right hemispheres and the following diffusion measures were extracted along each tract: fractional anisotropy, mean, axial, and radial diffusivity, number of fiber orientations, mean length of streamlines, and volume. All fiber bundles showed good morphological overlap between the two scanning timepoints and the test-retest reliability of all diffusion measures in most fiber bundles was good to excellent. We thus propose a fairly simple, but robust, HARDI-based tractography pipeline reliable for the longitudinal study of white matter language fiber bundles, which increases its potential applicability to research on the neurobiological mechanisms supporting language

    Genome-wide CRISPR screens identify ferroptosis as a novel therapeutic vulnerability in acute lymphoblastic leukemia

    Get PDF
    Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children. Despite the great progress achieved over the last 40 years, with cure rates now exceeding 85%, refractory or relapsed ALL still exhibit a dismal prognosis. This poor outcome reflects the lack of treatment options specifically targeting relapsed or refractory ALL. In order to address this gap, we performed whole-genome CRISPR/Cas drop-out screens on a panel of seven B-ALL cell lines. Our results demonstrate that while there was a significant overlap in gene essentiality between ALL cell lines and other cancer types survival of ALL cell lines was dependent on several unique metabolic pathways, including an exquisite sensitivity to GPX4 depletion and ferroptosis induction. Detailed molecular analysis of B-ALL cells suggest that they are primed to undergo ferroptosis as they exhibit high steady-state oxidative stress potential, a low buffering capacity, and a disabled GPX4-independent secondary lipid peroxidation detoxification pathway. Finally, we validated the sensitivity of BALL to ferroptosis induction using patient-derived B-ALL samples
    • …
    corecore