55 research outputs found

    Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer

    Full text link
    Deep saline aquifers are promising geological reservoirs for CO2 sequestration if they do not leak. The absence of leakage is provided by the caprock integrity. However, CO2 injection operations may change the geomechanical stresses and cause fracturing of the caprock. We present a model for the propagation of a fracture in the caprock driven by the outflow of fluid from a low-permeability aquifer. We show that to describe the fracture propagation, it is necessary to solve the pressure diffusion problem in the aquifer. We solve the problem numerically for the two-dimensional domain and show that, after a relatively short time, the solution is close to that of one-dimensional problem, which can be solved analytically. We use the relations derived in the hydraulic fracture literature to relate the the width of the fracture to its length and the flux into it, which allows us to obtain an analytical expression for the fracture length as a function of time. Using these results we predict the propagation of a hypothetical fracture at the In Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also show that the hydrostatic and geostatic effects cause the increase of the driving force for the fracture propagation and, therefore, our solution serves as an estimate from below. Numerical estimates show that if a fracture appears, it is likely that it will become a pathway for CO2 leakage.Comment: 21 page

    Staphylococcal Panton-Valentine Leucocidin as a Major Virulence Factor Associated to Furuncles

    Get PDF
    Panton-Valentine Leucocidin (PVL), one of the β-barrel pore-forming staphylococcal leucotoxins, is known to be associated to furuncles and some severe community pneumonia. However, it is still uncertain how many other virulence factors are also associated to furuncles and what the risk factors of furuncles are in immuno-compromised status of patients, especially the HIV (+) patients. In this paper, we use antigen immunoprecipitation and multiplex PCR approach to determine the presence of 19 toxins, 8 adhesion factors and the PFGE profiles associated to furuncles in three independent patient study groups of S. aureus (SA) isolates collected from the Cayenne General Hospital (French Guiana). The patient groups were made of: 16 isolates from HIV (−) patients, 9 from HIV (+) patients suffering from furuncles, and 30 control isolates from patients with diverse secondary infected dermatitis. Our data reveals that the majority (96%) of SA strains isolated from HIV patient-derived furuncles significantly produced PVL (p<10−7), whereas only 10% of SA strains produced this toxin in secondary infected dermatosis. A high prevalence of LukE-LukD-producing isolates (56 to 78%) was recorded in patient groups. Genes encoding clumping factor B, collagen- and laminin-binding proteins (clfB, cna, lbp, respectively) were markedly frequent (30 to 55%), without being associated to a specific group. Pulse field gel electrophoresis evidenced 24 overall pulsotypes, whereas the 25 PVL-producing isolates were distributed into 15 non clonal fingerprints. These pulsotypes were not specific PVL-producing isolates. PVL appears to be the major virulence factor associated to furuncles in Europe and in South America regardless of the immune status of the HIV patients

    Endovascular coils as lung tumour markers in real-time tumour tracking stereotactic radiotherapy: preliminary results

    Get PDF
    To evaluate the use of endovascular coils as markers for respiratory motion correction during high-dose stereotactic radiotherapy with the CyberKnife, an image-guided linear accelerator mounted on a robotic arm. Endovascular platinum embolisation coils were used to mark intrapulmonary lesions. The coils were placed in subsegmental pulmonary artery branches in close proximity to the target tumour. This procedure was attempted in 25 patients who were considered unsuitable candidates for standard transthoracic percutaneous insertion. Vascular coils (n = 87) were succesfully inserted in 23 of 25 patients. Only minor complications were observed: haemoptysis during the procedure (one patient), development of pleural pain and fever on the day of procedure (one patient), and development of small infiltrative changes distal to the vascular coil (five patients). Fifty-seven coils (66% of total inserted number) could be used as tumour markers for delivery of biologically highly effective radiation doses with automated tracking during CyberKnife radiotherapy. Endovascular markers are safe and allow high-dose radiotherapy of lung tumours with CyberKnife, also in patients who are unsuitable candidates for standard transthoracic percutaneous marker insertion

    T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    Get PDF
    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions

    Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity.</p> <p>Methods</p> <p>The <it>in vivo </it>antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII) derived from a cutaneous nodule of a RET mouse.</p> <p>Results</p> <p>HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice.</p> <p>Conclusions</p> <p>Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis. Consequently, HB-19 could provide a novel therapeutic agent by itself or as an adjuvant therapy in association with current therapeutic interventions on a virulent cancer like melanoma.</p

    Effect of CO2 Injection Temperature on Caprock Stability

    Get PDF
    AbstractDeep saline aquifers are promising candidates for long-term CO2 storage, provided they don’t leak. However, injection of CO2 causes pressure buildup and affects the geomechanical stresses in the caprock. If CO2 is injected at a temperature different from the temperature in the aquifer, additional stresses develop due to thermal expansion/contraction. Our work addresses the question whether these stresses are capable of fracturing the caprock and causing leakage. Using a fully coupled thermo-poromechanical model we simulate 10 years of continuous injection of CO2 at different temperatures. We use the geomechanical parameters for aquifer on Krechba (In Salah, Algeria) including recently published data on initial in situ stresses. We found that when CO2 is injected at temperature 40-50°C the stresses in the caprock become tensile and even overcome the tensile strength causing fracturing of the caprock. After initiation the fractures begin to propagate, driven by high fluid pressure in the reservoir. We estimate the fracture length to be 50 m within the first 10 years of propagation

    Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability

    Get PDF
    AbstractTopology optimization is used to systematically design periodic materials that are optimized for multiple properties and prescribed symmetries. In particular, mechanical stiffness and fluid transport are considered. The base cell of the periodic material serves as the design domain and the goal is to determine the optimal distribution of material phases within this domain. Effective properties of the material are computed from finite element analyses of the base cell using numerical homogenization techniques. The elasticity and fluid flow inverse homogenization design problems are formulated and existing techniques for overcoming associated numerical instabilities and difficulties are discussed. These modules are then combined and solved to maximize bulk modulus and permeability in periodic materials with cubic elastic and isotropic flow symmetries. The multiphysics problem is formulated such that the final design is dependent on the relative importance, or weights, assigned by the designer to the competing stiffness and flow terms in the objective function. This allows the designer to tailor the microstructure according to the materials’ future application, a feature clearly demonstrated by the presented results. The methodology can be extended to incorporate other material properties of interest as well as the design of composite materials

    OMAE2009-80115 DYNAMIC INTERACTIONS BETWEEN THE VADOSE AND PHREATIC ZONES DURING BREAKING SOLITARY WAVE RUNUP AND DRAWDOWN OVER A FINE SAND BEACH

    No full text
    ABSTRACT The objective of this work is to investigate the dynamic interactions between the vadose and the phreatic zones during breaking solitary wave runup and drawdown over a fine sand beach. Extreme wave runup and drawdown in the nearshore region can lead to soil failure in the form of severe erosion, liquefaction, or slope instability. However, the physics of the nearshore region is difficult to simulate numerically due to the greatly varying time scales between the four governing processes: loading and unloading caused by wave runup and drawdown, propagation of the saturation front, pore pressure diffusion, and soil consolidation. Such processes are also difficult to simulate experimentally via model-scale wave tank studies due to the inability to satisfy all the similarity requirements for both the wave and the porous media in a 1g environment. Hence, the goal of this work is to perform a 1D study using a multiphase model to describe the transient responses of the species saturation, pore fluid pressure, effective stresses, and skeleton deformation. Results are shown for three simulations: (1) full-scale simulation, (2) 1:20 laboratory-scale simulation without scaling of the porous media, and (3) 1:20 laboratory-scale with consistent scaling of the soil permeability. The results suggest that the scaling of porous media between the pore fluids and soil skeleton has a significant influence on the transient response of both the vadose and the phreatic zones

    Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana

    No full text
    The suitability of the natural 15N abundance and of total N concentration of leaves as indicators of the type of plant N nutrition in a rain forest of French Guiana were tested. Leaf samples from primary legume species, non-legumes (pioneer species) and from the non-N2-fixing species Dicorynia guianensis were analyzed. Both '15N and total leaf N varied widely (m1 r '15N (‰) r 7 and 1 r leaf N(%) r 3.2) suggesting possible distinctions between diazotrophic and non-fixing plants. The '15N also revealed two statistically distinct groups of non-N2-fixing species ('15N = 5.14 - 0.3 vs '15Nv=v1.65 - 0.17) related to the different ecological behaviors of these species in the successional processes. We conclude that the '15N signature of plant leaves combined with their total N concentration may be relevant indicators for identifying functional groups within the community of non-N2-fixing species, as well as for detecting diazotrophy. Despite the variability in the '15N of the non-N2-fixing species, N2-fixing groups can still be identified, provided that plants are simultaneously classified taxonomically, by their leaf '15N and total N concentration and by the presence or absence of nodules. The variability in the '15N of the non-fixing species is discussed
    corecore