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Abstract

Topology optimization is used to systematically design periodic materials that are optimized for multiple properties and
prescribed symmetries. In particular, mechanical stiffness and fluid transport are considered. The base cell of the periodic
material serves as the design domain and the goal is to determine the optimal distribution of material phases within this
domain. Effective properties of the material are computed from finite element analyses of the base cell using numerical homog-
enization techniques. The elasticity and fluid flow inverse homogenization design problems are formulated and existing tech-
niques for overcoming associated numerical instabilities and difficulties are discussed. These modules are then combined and
solved to maximize bulk modulus and permeability in periodic materials with cubic elastic and isotropic flow symmetries. The
multiphysics problem is formulated such that the final design is dependent on the relative importance, or weights, assigned by
the designer to the competing stiffness and flow terms in the objective function. This allows the designer to tailor the micro-
structure according to the materials’ future application, a feature clearly demonstrated by the presented results. The meth-
odology can be extended to incorporate other material properties of interest as well as the design of composite materials.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Development of optimized multifunctional materials is of great interest from technological and theoretical
viewpoints to all engineering fields. This paper designs such materials computationally using the method of
topology optimization. In particular, three-dimensional periodic porous materials are simultaneously opti-
mized for mechanical stiffness and fluid permeability while achieving prescribed elastic and flow symmetries.
The design optimization problem is formulated such that the designer may manipulate the microstructure by
assigning weights, or measures of relative importance, to the competing stiffness and permeability terms in the
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objective function. The designer selects these weights based on the materials future use, thus allowing the
microstructure to be tailored according to its specific application.

Design of material microstructures using topology optimization is a relatively young field. The underlying
idea is that the microstructure of material can be viewed as a small structure, allowing for the application of
structural topology optimization methods developed for macroscopic design problems (Sigmund, 1994a;
Bendsøe and Sigmund, 2003). Microstructural behavior is linked to macroscopic properties by homogeniza-
tion theory, which provides a means for computing the effective (average) properties of a material via analysis
of a single realization, or base cell. Homogenization eliminates the need to analyze a bulk of the material at the
microscopic scale, an enormous and potentially infeasible computational task. The design of materials is then
an inverse homogenization problem: find the optimal base cell design that yields desired effective properties.

Topology optimization seeks to determine the optimal distribution of material phases in a given design
domain and hence it is well suited for solving the inverse homogenization problem. In typical two-phase
solid-void design problems, the approach reduces to determining whether or not material is present at each
point in space within the base cell. The material distribution function is traditionally denoted as q(x), where
q(x) = 1 indicates solid material present at location x and q(x) = 0 indicates the presence of a void. Bendsøe
and Kikuchi (1988) provided a numerical implementation of the material distribution approach where the
design domain is discretized using finite elements, with each element having a volume fraction, or relative den-
sity, qe that indicates the presence (or lack) of material within the element. Phase is constant inside each ele-
ment and thus connectivity of the solid elements defines topology.

The inverse homogenization problem was first solved with topology optimization by Sigmund (1994a,b,
1995) using truss and frame modeled base cells to design minimum weight topologies with prescribed elastic
properties, including negative Poisson’s ratio. It has since been used to design minimum weight materials with
prescribed thermoelastic properties (Sigmund, 1994a), materials with extreme elastic or thermal expansion
properties (Sigmund and Torquato, 1997), piezocomposites (Sigmund et al., 1998), and materials with extreme
fluid transport properties (Guest, 2005; Guest and Prévost, under review).

An area of topology optimization that remains relatively unexplored is the design of multifunctional mate-
rials. The above-mentioned works have focused on optimizing a single property, often while requiring a lower
bound on a competing property. For example, Sigmund and Torquato (1997) minimized the isotropic thermal
strain coefficient while enforcing a lower bound on effective bulk modulus. Recently, Torquato et al. (2002,
2003) used two-phase composite materials to maximize the simultaneous transport of heat and electricity,
properties that are both governed by scalar equations. The material phases were selected such that one phase
has high thermal conductivity but low electrical conductivity and the other phase has low thermal conductivity
but high electrical conductivity. The effective scalar properties were summed in the objective function and the
solution was found to be a triply periodic minimal surface. By mathematical analogy, the results apply to any
pair of the following effective properties: electrical conductivity, thermal conductivity, dielectric constant, and
magnetic permeability (Torquato et al., 2002).

The goal of this work is to design periodic multifunctional materials for maximum effective elastic stiffness
and fluid permeability. These properties are competing, as stiffness desires large quantities of solid while per-
meability desires large holes in the topology. We formulate the problem such that the final design is dependent
on the weight assigned to the stiffness and transport terms in the objective function, thereby allowing the
designer to tailor the microstructure according to its future use.

While periodic materials have been designed for either maximum effective stiffness or maximum fluid per-
meability, the combined problem simultaneously optimizing both properties is extraordinarily complex and
has yet to be attempted. Vector equations govern both properties and the problem must be formulated and
solved in three dimensions to be meaningful. This yields a complex system of governing equations in the opti-
mization problem. To simplify matters, we will assume deformations are uncoupled from fluid velocities and,
therefore, will not consider materials with low void ratios and relatively thin walls susceptible to flow-induced
deformation. Although the presented methodology is applicable to such materials, the computational require-
ments are more intensive.

The problem is complicated further by known numerical instabilities in the maximum stiffness problem
(mesh dependence and checkerboard patterns) and numerical difficulties in the flow optimization problem
(simulating the moving-boundary no-slip condition). We solve the homogenization equations numerically
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using finite elements and circumvent the numerical issues using techniques developed by the authors for
macroscopic design problems. Solutions to the proposed multi-objective design problem demonstrate that a
wide-range of material designs are obtained by varying the weight assigned to the competing properties in
the objective function.

The layout of the paper is as follows. The elastic and fluid homogenization equations are given in Section 2
and the inverse homogenization problem is formulated in Section 3. Section 4 summarizes numerical issues
associated with the maximum stiffness and fluid flow problems and the techniques used for circumventing
these issues. The optimization algorithm and results are presented in Sections 5 and 6, respectively. Conclud-
ing remarks are given in Section 7.

2. The homogenization equations

In this work we consider periodic materials characterized by a single base cell, denoted as Y. The base cell is
repeated to form the periodic material. Homogenization is performed numerically using finite elements, and
periodic boundary conditions are implemented by assigning the same equation number to the degrees of free-
dom of opposing nodes. This is the simplest way to enforce the periodic boundary conditions as standard finite
element assembly and solution routines can be used without modification.

2.1. Elastic homogenization

The goal of elastic homogenization is to determine the effective stiffness tensor CH of a material, where the
constitutive equation for linear elastic behavior is assumed:
r ¼ CHe ð1Þ

where r and e are the stress and strains fields, respectively.

As developed in Bensoussan et al. (1978) and Sanchez-Palencia (1980), the effective elasticity tensor of a
periodic material can be expressed in energy form in the following manner:
CH
pqrse

oðklÞ
pq eoðijÞ

rs ¼ 1

jY j

Z
Y

CpqrsðeoðklÞ
pq � e�pqðxklÞÞðeoðijÞ

rs � e�rsðxijÞÞdY ð2Þ
where Cpqrs is the elasticity tensor of the solid (matrix) material, eoðklÞ
pq are the test strain fields, e�pqðxklÞ are the

fluctuation strains caused by the inhomogeneous base cell defined through the strain–displacement relations

e�pqðxklÞ ¼ 1
2
ðoxkl

p

oyq
þ oxkl

q

oyp
Þ, and the displacement fields xkl is found through solution to the following base cell

problem:
Z
Y

Cijpq

oxkl
p

oyq

ovi

oyj

dY ¼
Z

Y
Cijpqe

oðklÞ
pq

ovi

oyj

dY 8v 2 eV
eV ¼ fv : v is Y -periodicg

ð3Þ
The test strain fields eoðklÞ
pq are chosen as unit vectors and symmetry is used to reduce the number of test strain

fields in three-dimensional elasticity from nine to six (three normal and three shear strain cases).
The homogenization is performed numerically using finite element analysis. Following the work of Guedes

and Kikuchi (1990), the base cell is discretized and, after integration over each element and substituting the
definitions of the unit strain tensors into the left-hand side of Eq. (2), the homogenized elasticity tensor is writ-
ten using standard finite element notation as
CH
ijkl ¼

1

jY j
X
e2Y

deðijÞ
o � deðijÞ� �T

keðqeÞ deðklÞ
o � deðklÞ� �

ð4Þ
where ke(qe) is the stiffness matrix of element e expressed as a function of the element volume fraction qe, deðijÞ
o

is the vector of nodal displacements for element e corresponding to the unit test strain field eo(ij), and de(ij) is the
vector of nodal displacements for element e related to the strain field e*(xij). The displacements d(ij) are un-
known and are found by solving the matrix problem
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KðqeÞdðijÞ ¼ fðijÞ

dðijÞis Y -periodic
ð5Þ
where K(qe) is the global stiffness matrix assembled (A
e
) from the element stiffness matrices and the nodal forces

f(ij) result from the unit test strain field (ij) and are computed by
fðijÞ ¼ A
e

keðqeÞdeðijÞ
o ð6Þ
Note that a uniform distribution of material yields a zero nodal force vector and consequently a zero nodal
displacement vector d(ij). The effective stiffness then equals the stiffness of the matrix material, i.e., CH = C.

Boundary conditions are applied to the base cell boundaries to prevent rigid body motion and impose the
unit strain field. In the two-dimensional case, for example, displacements in the direction normal to the bound-
ary are constrained for the normal test strain fields (Eqs. (11) and (22)), and in the direction parallel to the
boundary for the shear test strain field (Eq. (12)). The reader is referred to Hassani and Hinton (1998) for
details and figures regarding the base cell boundary conditions. Periodic boundary conditions are applied
to the unrestricted nodes on the boundary as previously discussed.

2.2. Homogenization of Stokes flow

Consider an incompressible viscous fluid that flows slowly through a porous medium. On the macroscopic
scale, flow through the material is governed by Darcy’s law:
U ¼ � 1

l
KH � ðrp0 � qf bÞ ð7Þ
where U is the vector of average fluid velocities, l is the viscosity, KH is the permeability tensor, $p0 is the
applied pressure gradient, qf is the fluid mass density, and b is the body force vector per unit mass. On the
microscopic scale, fluid flow through the void channels Xf of the porous material is governed by Stokes
equations:
lr2u�rp ¼ �qfb in Xf

r � u ¼ 0 in Xf

u ¼ 0 on Cs

ð8Þ
where u are the local velocities and p is the pressure. The third equation represents the no-slip condition along
the solid–fluid interface Cs.

Sanchez-Palencia (1980), operating in the context of periodic materials, was the first to derive Darcy’s law
from Stokes equations using homogenization. Defining a system of local coordinates y in the base cell Y, the
homogenized effective permeability tensor KH of a porous medium can be expressed as an ensemble average of
fluid velocities in the base cell as follows:
KH ¼ hwðyÞi ð9Þ

where h i represents the ensemble average and w is the characteristic flow field, or fluid velocity tensor in the
base cell, found by solving the following scaled Stokes flow equations:
r2wðyÞ � rpðyÞ ¼ �I y 2 XfðY Þ
r � wðyÞ ¼ 0 y 2 XfðY Þ
wðyÞ ¼ 0 y 2 CsðY Þ
w is Y -periodic

ð10Þ
where p is the characteristic pressure field and I is the second-order Identity tensor. The term wij of the flow
tensor w can thus be described as the velocity in the ith direction under a unit pressure gradient in the jth direc-
tion, and pj is the jth component of the scaled pressure. The size of the identity matrix is the number of spatial
dimensions d considered. The reader is referred to Sanchez-Palencia (1980) and Torquato (2002) for further
detail regarding derivation of the fluid homogenization equations.
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As we will be using homogenization in the context of optimization, it is useful to express effective perme-
ability in terms of power. Following Torquato (2002), the homogenized permeability of an ergodic medium
can be expressed as
KH ¼ hwi ¼ �hw � r2wi ¼ hrw : rwi ð11Þ
For convenience in future notation, let us introduce a superscript to Eq. (10) to isolate the spatial dimensions:
r2wðiÞðyÞ � rpðiÞðyÞ ¼ �eðiÞ y 2 XfðY Þ
r � wðiÞðyÞ ¼ 0 y 2 XfðY Þ
wðiÞðyÞ ¼ 0 y 2 CsðY Þ

ð12Þ
for i = 1,d, where the velocity vector w(i), scalar pressure p(i), and body force vector e(i) associated with direc-
tion case i are related to the tensors w, p, and I by
wðiÞj ¼ wji; pðiÞ ¼ pi; eðiÞj ¼ dji ð13Þ
where d is the Kronecker delta.
The system of Stokes flow equations (12) is solved numerically in the mixed formulation using stabilized

finite elements to circumvent the Babuska–Brezzi condition (Babuska, 1971; Brezzi, 1974). Specifics regarding
the stabilization will be discussed in Section 4. Let us give the matrix form of the stabilized Stokes flow prob-
lem as
Ks �Gs

Ls þGT
s Ms

� �
wðiÞ

pðiÞ

" #
¼ fðiÞs

hs

" #
for i ¼ 1; d ð14Þ
where Ks is the viscosity stiffness matrix, Gs is the gradient matrix, GT
s is the divergence matrix, Ls is the con-

sistency matrix, Ms is the stabilization matrix, and f i
s and hs are the nodal forces resulting from body forces

and boundary conditions. Note that only the body forces in vector fðiÞs change with each loading case. The
subscript ‘s’ has been added to the above terms to emphasize Stokes flow for clarity in future use.

Consequently, the computation of the effective permeability tensor is expressed in finite element notation as
KH ¼ ½KH
ij � ¼ ½hw

ðiÞ
j i� ¼

1

jY jw
ðiÞTKsw

ðjÞ ¼ 1

jY j
X
e2X
ðwðiÞÞeT

ke
sðwðjÞÞ

e ð15Þ
where ke
s is element viscosity stiffness matrix and (wi)e is the nodal velocity vector of element e for load case i.

3. Inverse homogenization problem formulation

Homogenization theory allows us to compute effective properties of the bulk material given the topology of
a base cell. We seek to design materials, and thus must formulate and solve an inverse homogenization prob-
lem: find the optimal base cell topology that yields desired effective properties. The characteristic base cell is
the design domain and a material distribution problem must be solved. As in traditional structural optimiza-
tion, each element in the base cell possesses a volume fraction qe, or relative density, that indicates what phase
is present in the elemental domain, where qe = 1 represents material present (e is a solid element) and qe = 0
represents fluid present (e is a void element). Connectivity of the solid elements defines topology, which in turn
dictates stiffness and fluid velocities. Therefore, qe is traditionally the design variable (see e.g., Bendsøe and
Sigmund, 2003). As previously mentioned, we will assume fluid velocities are uncoupled from matrix deforma-
tions to simplify computations.

As discussed in the introduction, the multi-objective approach taken here allows the designer to assign dif-
ferent weights, or measures of importance, to the stiffness and transport terms in the objective function accord-
ing to the materials intended future use. These weights then influence the final design.

The topology optimization problem is formulated with constraints including prescribed elastic and fluid
flow symmetries, the homogenization equations, lower (VL) and upper (VU) bounds on the available volume
of material, and bounds on the element volume fraction qe. As reported in other inverse homogenization
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works (Sigmund and Torquato, 1997; Sigmund et al., 1998; Guest, 2005), we have found the problem easier to
solve when prescribed symmetry constraints are enforced using a penalty term in the objective function. Fur-
ther, we will be using a nested-loop approach where design and state variables are computed independently,
potentially leading to infeasible designs during optimization iterations. Expressing these symmetry constraints
as penalty functions, however, allows for the use of feasible region optimization methods. The topology opti-
mization problem consequently takes the following form:
max
qe;d;w;p

astiff fstiffðqe; dÞ þ apermfpermðqe;wÞ � ðwstiff errorstiffðqe; dÞ þ wperm errorpermðqe;wÞÞ

subject to V L 6

X
e2X

qeve
6 V U

KðqeÞdðijÞ ¼ fðijÞðqeÞ
KsðqeÞ �GsðqeÞ

LsðqeÞ þGT
s ðqeÞ MsðqeÞ

� �
wðiÞ

pðiÞ

" #
¼ fðiÞs ðqeÞ

hsðqeÞ

" #
for i; j ¼ 1; d

wðiÞ ¼ 0 8y 2 Cs

dðijÞ;wðiÞ is Y -periodic

qe ¼ fqe
min; 1g 8e 2 X

ð16Þ
where astiff and aperm are the weights assigned to the stiffness and permeability objectives fstiff and fperm, respec-
tively, selected such that astiff + aperm = 1, and wstiff and wperm are the weights assigned to the elastic and flow
symmetry penalty functions errorstiff and errorperm, respectively. To avoid local minima, wstiff and wperm are
initially set to a small number (e.g., 1.0) and are increased as the algorithm progresses. The variable ve is
the volume of element e and qe

min is a small positive number to avoid singularity of the elastic global stiffness
matrix K, necessary as element stiffness is initially set proportional to the element volume fraction by
keðqeÞ ¼ qeke
0 ð17Þ
where ke
0 is the element stiffness matrix of a solid element. Although it will be discussed in Section 4, for com-

pleteness let us simply say that void elements have Stokes flow stiffness while solid elements carry no-slip nodal
boundary conditions.

3.1. The stiffness term in the objective function

The elastic property we choose to maximize is bulk modulus B, a material’s resistance to volumetric strain.
This is measure of stiffness and a property that is often optimized in literature (Sigmund and Torquato, 1997;
Sigmund, 2000; Bendsøe and Sigmund, 2003). Assuming cubic or isotropic symmetry, the bulk modulus of a
material can be expressed in terms of the three-dimensional effective elasticity tensor as
BH ¼ 1

3

1

3
CH

11 þ CH
22 þ CH

33

� �
þ 2

3
CH

12 þ CH
13 þ CH

23

� �� �
ð18Þ
The functions fstiff and fperm are normalized to improve scaling of the objective function. We simply use the
maximum values obtained from solving the individual optimization problems. In other words, the elastic nor-
malization term B* is the bulk modulus when problem (16) is solved with astiff = 1 (and without normaliza-
tion). Alternatively, each normalization term could be selected as the theoretical upper bound on the
property that is being optimized. Note that weighting schemes in multi-objective optimization typically carry
only internal meaning to the user and thus normalization is not required.

The elastic stiffness function to be optimized is therefore given by
fstiffðqe; dÞ ¼ BHðqe; dÞ
B�

ð19Þ
We will design cubic symmetric materials in three dimensions, requiring the effective stiffness matrix to take
the following form:
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Ccubic ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

2666666664

3777777775
ð20Þ
The elastic symmetry error function is formulated as follows:
errorstiffðqe; dÞ ¼ errorcubic
stiff ðqe; dÞ

errornorm
stiff ðqe; dÞ ð21Þ
where errornorm
stiff is a normalization term and errorcubic

stiff places a restriction on all but the three independent elas-
tic stiffness coefficients as follows:
errorcubic
stiff ¼ ðCH

11 � CH
22Þ

2 þ ðCH
22 � CH

33Þ
2 þ ðCH

44 � CH
55Þ

2 þ ðCH
55 � CH

66Þ
2 þ ðCH

12 � CH
13Þ

2 þ ðCH
12 � CH

23Þ
2

þ
X6

j¼4

Xj�1

i¼1

ðCH
ij Þ

2 ð22Þ
It should be noted that this penalty function differs slightly from functions used in other works. Sigmund and
Torquato (1997) consider two-dimensional elasticity and enforce square symmetry by including only diagonal
terms in the penalty function; off-diagonal shear terms are not present. Although not explicitly stated, it is
presumed that this formulation was extended to three dimensions to obtain the results found in Sigmund
(2000) and Bendsøe and Sigmund (2003), with the only additional restriction being placed on CH

13 and CH
23.

In other words, the error functions in those works do not include the last term in Eq. (22). When this term
was omitted, however, our algorithm yielded materials having nonzero off-diagonal shear terms, materials that
were not cubic.

The error penalty function is normalized for consistency when matrix materials with different elastic prop-
erties are used. When the error is enforced as a penalty term in the objective function, the normalization func-
tion must prevent the effective stiffness tensor from going to a zero matrix when wstiff, the weight assigned to
the error function, is very large. Examples of the normalization function from previous works include the
square of the partial trace of CH (using only the diagonal terms relating normal stress and strain) (Sigmund
and Torquato, 1997), and the square of the in-plane bulk modulus (Sigmund et al., 1998).

However, the objective function can be improved by increasing the magnitude of the error normalization
term to reduce the error penalty. This was occasionally observed when wstiff was very large and could poten-
tially decrease the elastic design property. We avoid this pitfall by simply using the design objective as the error
function normalization term, i.e.,
errornorm
stiff ¼ ðBHðqe; dÞÞ2 ð23Þ
Although we present results only for cubic maximum bulk modulus materials in this paper, the approach is
easily extended to any symmetry or elastic property that can be expressed as a function of the elasticity tensor
(e.g., Young’s modulus, Poisson’s ratio, etc.).

3.2. The permeability term in the objective function

The objective with respect to fluid transport will be to design a periodic material with maximum permeabil-
ity and isotropic flow symmetries. By definition, the isotropic permeability tensor must take the form:
KH ¼ kHI ð24Þ

where kH is the scalar permeability and is computed by
kH ¼ 1

d

Xd

i¼1

KH
ii ð25Þ
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The permeability function to be optimized is therefore given by the following expression:
fpermðqe;wÞ ¼ kHðqe;wÞ
k�

ð26Þ

where we have chosen the normalization term k* to be the maximum permeability, which can be found by
solving problem (16) with aperm = 1 (and without normalization).

To enforce isotropy, the flow penalty function errorperm is computed by the following expression:
errorpermðqe;wÞ ¼
erroriso

permðqe;wÞ
errornorm

perm ðqe;wÞ ¼
Pd�1

i¼1 KH
ii � KH

ðiþ1Þðiþ1Þ

� 	2

þ
Pd

i¼1

Pd
j¼iþ1ðKH

ij Þ
2

errornorm
perm qe;wð Þ ð27Þ
where the normalization expression errornorm
perm is chosen to be the square of the scalar permeability kH, prevent-

ing the algorithm from yielding zero permeability designs when wperm is very large.
Although maximum isotropic permeability is the only case considered here, extension of the methodology

to other permeability objectives and symmetries is straightforward. For such other design problems, the error
normalization term could be the square of the property to be maximized or the trace of KH.

4. Known numerical implementation issues

Problem (16) is extraordinarily complex and difficult to solve. First, it is a binary, moving-boundary opti-
mization problem due to the binary design variable constraint and no-slip condition along the solid–fluid
interface. As such, direct solution is an extremely difficult task requiring discrete optimization algorithms
and updating the nodal boundary conditions representing the no-slip condition at every design iteration. A
second complexity is that the maximum stiffness problem is ill-posed (Tartar, 1977; Lurie et al., 1982; Kohn
and Strang, 1986). While it was recently determined that the fluid optimization problem is well posed (Borrvall
and Petersson, 2003; Evgrafov, 2005) it is not yet known under what combinations of astiff and aperm the com-
bined problem will be well posed.

The following sections describe the numerical techniques we use for circumventing known numerical insta-
bilities and difficulties in the individual stiffness and flow problems, respectively.

4.1. Regularizing the optimization problem

Due to the inherent difficulty of binary programming problems, it is common practice in structural optimi-
zation to relax the 0–1 constraint on qe, transforming the problem into a continuous material distribution
problem. Although permitted, elements with intermediate volume fractions (between qe

min and 1) are undesir-
able and are thus penalized to limit their presence in the final solution. This penalization is applied to element
stiffness matrices as opposed to an explicit term in the objective function. For the fluid problem, the penali-
zation is directly tied into the regularization of the moving-boundary no-slip condition.

4.1.1. Regularization of the stiffness problem

With respect to the elastic problem, we use the popular SIMP method (solid isotropic material with penal-
ization) developed by Bendsøe (1989) for the penalization. SIMP raises the volume fraction coefficient of ele-
ment stiffness tensors to the exponent g, meaning Eq. (17) is replaced with
keðqeÞ ¼ ðqeÞgke
0 ð28Þ
where g > 1, thereby decreasing the stiffness of elements with intermediate qe, making them uneconomical. To
avoid local minima, a continuation method is used where g is initially small and raised in subsequent design
iterations as described in Guest et al. (2004). The reader is referred to Bendsøe and Sigmund (2003) for more
detail on the SIMP and continuation methods.

4.1.2. Regularization of the fluid flow problem

Regularization of the no-slip condition and binary constraint on qe in fluid topology optimization is a topic
that has only recently been studied. Proposed techniques for Stokes flow optimization problems, which are
the governing equations in the fluid homogenization problem, penalize nodal velocities of solid elements to
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approximate the no-slip condition. These techniques include using a numerical damping term derived from a
plane flow model (Borrvall and Petersson, 2003) and using variable viscosity or two material phases with high
and low permeability (Evgrafov, 2005). We prefer a Darcy flow regularization developed by the authors where
the solid phase is treated as a porous medium and consequently flow ‘‘through’’ the solid phase is governed by
Darcy’s law. Nodal velocities can then be driven to zero by assigning a low value to the solid phase permeability j.
The advantages of this approach are that it is straightforward, uses existing stabilized finite element formulations
to solve the Darcy–Stokes flow problem, and offers the potential for optimizing the layout of a permeable solid
phase as Darcy’s law would govern flow in such a case. Further, the binary constraint is relaxed yet 0–1 designs
can be achieved without additional penalization of intermediate volume fractions. The numerical implementa-
tion of the Darcy regularization is summarized here, though the reader is referred to Guest and Prévost (2006)
for details.

Treating the solid phase as a porous medium means that various regions in the design domain will be gov-
erned by different equations. This discontinuity can be eliminated by combining the equations through the bin-
ary material distribution function q, creating the following Darcy–Stokes system of equations that governs
flow everywhere in the domain:
ð1� qðyÞÞr2 � qðyÞ 1

j
I

� �
wðiÞðyÞ � rpðiÞðyÞ ¼ �eðiÞ y 2 XðY Þ

r � wðiÞðyÞ ¼ 0 y 2 XðY Þ
ð29Þ
Note that the explicit no-slip condition no longer appears but rather is simulated by using a low value of the
solid phase permeability j.

A primary advantage of the Darcy regularization is that it allows for consistency with the aforementioned
solution of the Stokes equations. The Darcy flow component of Eq. (29) is also solved numerically in mixed
formulation using stabilized finite elements to circumvent the Babuska–Brezzi condition. Let us give the
matrix form of the stabilized Darcy–Stokes flow problem as
KdsðqeÞ �GdsðqeÞ
GT

dsðqeÞ MdsðqeÞ

� �
wðiÞ

pðiÞ

" #
¼ f

ðiÞ
ds ðqeÞ

hdsðqeÞ

" #
for i ¼ 1; d ð30Þ
where the combined Darcy–Stokes viscosity matrix Kds, gradient matrix Gds, divergence matrix GT
ds, and sta-

bilization matrix Mds are assembled from Stokes (denoted by s) and Darcy (denoted by d) element matrices in
the following manner:
KdsðqeÞ ¼ A
e

ke
dsðqeÞ ¼ A

e
1� qe þ qe

min

� �
ke

s þ qe � qe
min

� �
ke

d

� �
GdsðqeÞ ¼ A

e
1� qe þ qe

min

� �
Ge

s þ qe � qe
min

� �
Ge

d

� �
GT

dsðqeÞ ¼ A
e

1� qe þ qe
min

� �
Le

s þGe
s

T� �
þ qe � qe

min

� �
Ge

d
T� �

MdsðqeÞ ¼ A
e

1� qe þ qe
min

� �
Me

s þ qe � qe
min

� �
Me

d

� �
ð31Þ
where A
e

is the standard finite element assembly routine. In other words, void elements have Stokes stiffness, solid

elements have Darcy stiffness, and elements with intermediate volume fractions have a linearly weighted com-
bination of Stokes and Darcy stiffness. The right-hand side forces f i

ds and hds are computed in the same manner.
We use the Stokes flow and Darcy flow stabilization techniques of Hughes et al. (1986) and Masud and

Hughes (2002), respectively. These are convenient because they each allow for equal-order interpolations of
the velocity and pressure fields.

Eq. (31) are modified slightly from the original work to account for qe
min. In fluid optimization, qe is per-

mitted to obtain the bounds of zero (and one) without losing positive definiteness of the global stiffness matrix.
Topology optimization of structures, however, requires a small nonzero minimum allowable volume fraction
to prevent singularity. Therefore, Eq. (31) is formulated so that voids maintain exact Stokes stiffness while
solid elements have an insignificant portion of Stokes stiffness. Note that solid element nodal velocities are
irrelevant, so long as they approach zero.

The linear scaling of the stiffness matrices (Eq. (31)) means solutions will naturally approach 0–1 topolo-
gies. The Darcy component dominates the ke

ds element stiffness computation and therefore greatly reduces cor-
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responding nodal velocities for low values of solid phase permeability. The only way to eliminate the Darcy
component is for the element to be a true void (qe ¼ qe

min). When the volume of voids is limited, intermediate
volume fractions are considered ‘uneconomical’ and 0–1 solutions are achieved without further penalization.

The effective homogenization tensor is now computed by any of the following formulas:
KH ¼ ½KH
ij � ¼ wðiÞj

D Eh i
¼ 1

jY jw
ðiÞTKdsw

ðjÞ ¼ 1

Yb c
X
e2X
ðwðiÞÞeT

ke
dsðwðjÞÞ

e ð32Þ
The use of the Darcy–Stokes stiffness matrix is acceptable here because we seek a 0–1 topology for the final
solution. Therefore, when low values of solid phase permeability are used, the nodal velocities of solid ele-
ments will approach zero, meaning Eq. (32) reduces to Eq. (15).

A continuation method is also used for the value of j to avoid local minima. The problem is first solved
with a relatively large value of solid phase permeability, and j is decreased in subsequent design iterations
as described in Guest and Prévost (2006).

4.2. Initial distribution of material

It is common practice in structural optimization to use a uniform distribution of material as the starting
topology for the optimization algorithm. This cannot be done in inverse homogenization problems as a uni-
form distribution contains no microstructural variation and consequently yields a zero gradient in elemental
elastic strain energies, fluid powers, and corresponding sensitivities, leading to the optimization algorithm
becoming stuck. It is therefore necessary to prevent the topology from achieving a uniform distribution at
any time in the optimization algorithm.

The nonuniform initial distribution of material used here expresses element volume fractions as a linear
function of the element’s distance from the location of the base cell centroid, with the largest volume fractions
being assigned to the elements near the centroid. Sigmund (1994a) used random initial distributions in addi-
tion to structured initial distributions. However, we found that this was not an option when solving the max-
imum stiffness problem independently as the algorithm transformed random distributions into uniform
distributions after only one or two iterations. This occurs because a uniform distribution often offers improved
stiffness while satisfying the prescribed elastic symmetries. Similar behavior was observed when solving the
maximum permeability problem (Guest and Prévost, under review).

Although not reported by Sigmund, initial distributions that express element volume fraction as a function
of location also transformed into uniform distributions when solving the maximum stiffness problem with no
initial penalization of intermediate volume fractions (i.e., when ginitial = 1.0). This is again due to the fact that
a uniform distribution offers improved stiffness and satisfies the prescribed elastic symmetries. Therefore, the
exponent g used by the SIMP method must initially be set to a value greater than 1.0 to penalize intermediate
volume fractions from the outset and prevent a uniform distribution from developing.
4.3. Imposing a minimum length scale

The reason for imposing a minimum length scale on load-carrying members in the final topology is three-
fold. First, it provides the designer with a means for addressing manufacturing restrictions on the smallest fea-
ture size. Second, it is well known that the continuum form of the maximum stiffness problem is ill-posed, and
thus generally lacks solutions. Solutions can be continuously improved by introducing more holes into the
topology while keeping the total volume of material constant, leading to the number of microscopic holes
becoming unbounded. This instability is reflected in the discretized version of the problem in the form of mesh
dependence, where the density of the mesh influences solutions, and nonoptimal checkerboard patterns, or
regions of alternating solid and void elements (see e.g., Haber et al., 1996; Sigmund and Petersson, 1998).
One approach to eliminating these numerical instabilities is to require load-carrying members in the final
topology to achieve a minimum length scale, or minimum size, thereby restricting the design space and ensur-
ing solutions exist to the original continuum problem. This restriction ensures mesh independent and
checkerboard-free topologies as local features smaller than the physical length scale are prohibited. Although
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the fluid optimization does not exhibit these properties (Borrvall and Petersson, 2003; Evgrafov, 2005), it is
not yet known under what combinations of astiff and aperm the combined problem will be well posed.

The third reason for imposing a minimum length scale is that the maximum bulk modulus problem does
not possess a unique solution. Microstructures known to achieve the upper Hashin–Shtrikman bounds include
the coated spheres assembly (Hashin, 1961), rank laminates (e.g., Francfort and Murat, 1986), Vigdergauz
(1989, 1999) microstructures, and new microstructures presented by Sigmund (2000) and Bendsøe and Sig-
mund (2003). The work presented here will be limited to single-length-scale microstructures like that of the
optimal Vigdergauz structures. This restriction can be achieved by imposing a minimum length scale on struc-
tural members that is large relative to the size of the base cell (Bendsøe and Sigmund, 2003).

We use the method of nodal design variables and projection functions developed by Guest et al. (2004) to
impose a minimum length scale. This approach uses nodal volume fractions, denoted as qn, as the design vari-
ables and projects these variables onto element space via a regularized Heaviside function to determine the
element-wise qe that define topology. The technique was shown to yield 0–1, minimum length scale compliant
solutions to macroscopic design problems. The approach is summarized here, although the reader is referred
to the original work for details.

The underlying idea for this approach is quite simple. Let us define rmin as the minimum allowable radius of
solid phase members in the final topology. Solid material is assigned to all elements within a distance rmin of a
node with volume fraction qn = 1. Fig. 1a illustrates this idea. This insures that when an element is designated
solid it is part of a structural member that is of at least diameter 2rmin. From the element’s perspective, all
nodes within a distance rmin of the centroid of an element e influence the element’s volume fraction qe. This
can be visualized by drawing a circular sub-domain Xe

w of radius rmin around the centroid of e as shown in
Fig. 1b. Nodes located inside Xe

w contribute to the computation of qe.
The example given above is the binary case. In practice, nodal volume fractions qn are projected onto the

element e via the following regularized Heaviside function:
Fig. 1.
all elem
node w
qe ¼ 1� e�bleðqnÞ þ leðqnÞe�b ð33Þ

where the parameter b dictates the curvature of the regularization, with b = 0 resulting in a linear regularization
and b =1 approaching the Heaviside function. Generally, a continuation method is used such that b is initially
chosen to be small and is raised in subsequent iterations to allow convergence to a 0–1 topology. The function
le(qn) is the linear weighted average of the volume fractions of nodes located inside Xe

w. The weighting scheme
is based on proximity of the node to the element centroid, with nearest nodes receiving the largest weights (Guest
et al., 2004).
The domains of influence for the minimum length scale scheme. (a) From the node n’s perspective: when qn indicates solid material,
ents having centroid located within a distance rmin are designated solid elements. (b) From the element’s perspective: when any
ithin distance rmin of the centroid of e indicates solid material, e is a solid element (i.e., nodes located inside Xe

w influence qe).



Fig. 2. In periodic materials, minimum length scale is respected across base cell boundaries. Therefore, when the domain Xe
w intersects a

boundary it is mapped to the opposing boundary of the base cell.
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Applying the methodology to periodic materials requires the minimum length scale to be respected across the
base cell boundaries. Therefore, when Xe

w intersects a boundary it extends into the neighboring base cell, or
equivalently into the interior of the same base cell from the opposing boundary. Fig. 2 demonstrates this con-
cept. As the nodal weighting function le(qn) is based on proximity to the element centroid, auxiliary nodal coor-
dinates corresponding to the location in the neighboring base cell should be used for nodes located in the portion
of Xe

w that has crossed a boundary. Further, opposing nodes on the boundary should have the same nodal vol-
ume fractions. This is achieved simply by assigning the same nodal design variable number to these nodes.

Implementing this technique requires only minor modifications to the original inverse homogenization
problem. The element-wise volume fractions qe that define topology are simply expressed as a function of
nodal volume fractions qn. The objective function, homogenization constraints, and volume constraint remain
the same, while the design variable bounds are applied to qn.

5. The optimization algorithm

The regularized form of problem (16) with minimum length scale control via nodal design variables and
projection functions is given as
max
qn;d;w;p

astifffstiffðqn; dÞ þ apermfpermðqn;wÞ � wstiff errorstiffðqn; dÞ � wperm errorpermðqn;wÞ

subject to KstiffðqnÞdðiÞ ¼ f
ðiÞ
stiff for i ¼ 1; dðd þ 1Þ=2

KdsðqnÞ �GdsðqnÞ
GT

dsðqnÞ MdsðqnÞ

� �
wðjÞ

pðjÞ

� �
¼ f

ðjÞ
ds ðqnÞ

hdsðqnÞ

" #
for j ¼ 1; d

V min 6

X
e2X

qeðqnÞve
6 V max

qmin
n 6 qn 6 1 8n 2 X

dðiÞ;wðjÞ is Y -periodic

ð34Þ
where qmin
n is the minimum allowable nodal volume fraction (Guest et al., 2004).
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5.1. Solution scheme

Problem (34) can be solved using a nested approach. Displacements and velocities for the current topology
are found by solving the equilibrium equations (5) and (30), respectively. These equations are solved indepen-
dently as we have assumed fluid velocities are uncoupled from deformation of the matrix material.

Displacements and velocities are then held constant and the optimization problem is solved to determine
the new nodal volume fractions qn. Consequently, the fixed displacements and velocities optimization problem
reduces to the following, given in minimization form (Guest, 2005):
min
qn

�astiff fstiffðqn; dÞ þ apermfpermðqn;wÞ þ wstiff errorstiffðqn; dÞ � wperm errorpermðqn;wÞ

subject to V min 6

X
e2X

qeðqnÞve
6 V max

qmin
n 6 qn 6 1 8n 2 X

ð35Þ
Problem (35) is solved using the method of moving asymptotes (MMA) (Svanberg, 1995), an algorithm that
minimizes sequential convex approximations of the original function and is known to be very efficient for
structural optimization problems. The convex sub-problem is solved using the interior point method detailed
in Benson et al. (2002). The displacements and fluid velocities are updated following each MMA iteration and
the process iterates until the topology converges.

5.2. Avoiding pitfalls of the continuation methods

When solving the stiffness and permeability design problems independently, continuation methods allow
intermediate volume fractions to exist with little or no penalization during early design iterations. This helps
prevent solutions from converging to local minima. As noted, these continuation methods are applied to the
exponent penalty in the SIMP method, the solid phase permeability in the Darcy regularization, and the reg-
ularized Heaviside parameter b for the minimum length scale scheme.

A shortcoming of this approach was revealed when the combined problem was first solved. By using a rel-
atively high value for the initial material permeability j, velocities at the nodes of solid elements are not sig-
nificantly penalized. When weight on the stiffness objective was high, a plane of solid material would form
such that it filled an entire cross-section of the base cell before j was sufficiently decreased. As velocity is held
constant during the design iteration in the nested approach, this plane would remain composed of solid ele-
ments and permeability in the direction normal to the plane would approach zero. This was not seen in the
permeability-only design problem as there was no incentive to improve effective stiffness.

This issue could likely be avoided by using more rigorous and computationally expensive algorithms, such
as binary optimization algorithms (without continuation methods) or algorithms that solve the original prob-
lem simultaneously for nodal volume fractions, solid displacements, and fluid velocities, rather than by nested
approach. Alternatively, one could start with a much smaller initial value for j to prevent the completely solid
cross-section from appearing early in the design iterations, although this would more likely result in solutions
that are local minima.

The approach taken here is to require a minimum permeability for the microstructure at early stages of the
design. This minimum allowable permeability, kmin, should approach zero as the algorithm progresses and the
solid phase permeability j is reduced. Its initial value is chosen to be slightly greater than the effective perme-
ability of a microstructure featuring a thin plane of solid elements blocking flow in each principle direction –
i.e., single sheets of solid material lying in the x–y, y–z, and x–z global coordinate planes. Therefore, when
the algorithm begins, a temporary dummy vector of element volume fractions is constructed to match this pro-
file and the effective permeability is computed using the initial value of j. This effective permeability is increased
slightly (e.g., 1%) and assigned to kmin. It is sufficient for our purposes to assume that the velocity in solid ele-
ments is proportional to the material permeability j (Guest and Prévost, 2006), and thus the fictitious topology
does not need to be analyzed again. In future iterations, when j is decreased, kmin is decreased proportionally.

The minimum permeability constraint is imposed as a penalty in the objective function. Denoted as Sk min,
its magnitude must be very large when kH < kH

min, and near-zero otherwise. There are many well-known barrier
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functions that exhibit these characteristics. However, the authors have used the following penalty function in
other work (Guest, 2005) and so it is used here out of convenience:
Sk minðqn;wÞ ¼ ð1þ kH
min � f1Þ 1� kHðqn;wÞ

k�

� �� �f2

ð36Þ
where f1 and f2 control the location and slope of the penalty curve, respectively (Guest, 2005). Note that func-
tion is zero when the effective permeability achieves the upper bound (kH = k*).

As we are operating with fixed nodal velocities, the penalty term Sk min is subtracted from the objective
function of Problem (35). This implementation has been successful in preventing the design of microstructures
that prematurely block flow with solid elements, while seeming to have little to no impact on problems where
flow should be blocked (astiff near 1) or where flow is not ever blocked (large aperm).

6. Designs for 3-D periodic materials with maximized stiffness and permeability

It is not possible to design microstructures with optimized stiffness and fluid transport properties in a two-
dimensional setting if square elastic and/or isotropic fluid flow symmetries are desired. Non-zero elastic stiff-
ness would require a continuous body of material to connect opposing boundaries of the base cell, thereby
eliminating macroscopic flow in the direction parallel to those boundaries. The combined problem is therefore
only solved in three dimensions.

The results contained in this section were produced using a cube design domain of unit volume with the
prescribed volume of material equal to 0.50 (Vmin � 0.5 � Vmax). Young’s modulus of the matrix material
is arbitrary and is thus set to 1, Poisson’s ratio is 0.33, and rmin is 0.05. As for the parameters affected by
the continuation methods, b of the element projection functions is initially 10, exponent g of the SIMP method
is initially 5.0, and material permeability j is initially 0.042h2, slightly lower than the permeability at which the
diagonal terms of the Darcy and Stokes viscosity stiffness matrices are equal for an 8-node cube. The problem
was solved using 8-node brick elements with the minimum permeability penalty function enabled.

The results shown in this section are designs for three-dimensional periodic materials with maximized bulk
modulus BH and permeability kH. The elastic symmetry requirement is cubic while flow is required to be iso-
tropic, with each penalty function assigned equal weight (wstiff = wperm). The problem was solved for the
following weight combinations:
ðaÞ astiff ¼ 1:00 aperm ¼ 0:00 ðbÞ astiff ¼ 0:75 aperm ¼ 0:25

ðcÞ astiff ¼ 0:50 aperm ¼ 0:50 ðdÞ astiff ¼ 0:25 aperm ¼ 0:75

ðeÞ astiff ¼ 0:00 aperm ¼ 1:00
Fig. 3 displays the periodic material structures that result under the weighting schemes. The periodic structures
shown are composed of eight base cells. Details of the material microstructure can be seen in Fig. 4, which
displays the solid phase of the base cells and corresponding periodic material structures. The topology of
the fluid phase corresponding to these base cells is difficult to interpret. Therefore, a new base cell was ex-
tracted from the periodic structures such that the center of the new base cell is located at the corner of the
base cells shown in Fig. 4. The fluid phase of these new base cells and corresponding periodic materials are
shown in Fig. 5. Note that the periodic structures shown in Fig. 5 are located (0.5,0.5,0.5) from the periodic
structures shown in Fig. 4.

When only stiffness is optimized (case a), the base cell design is a hollow box with rounded corners, resem-
bling cubic maximum bulk modulus designs previously reported in literature (Sigmund, 2000; Bendsøe and
Sigmund, 2003). The box design is a close-walled structure and consequently the effective permeability is zero.
This is clearly shown by the cross-section view in Fig. 5a as the fluid base cells are disconnected from one
another.

When the weight on the permeability term in the objective function increases to 0.25, small rectangular
holes develop in the periodic material, forming channels for fluid flow as shown in Fig. 4b. As the importance
of permeability rises, the diameter of the channel at its narrowest point becomes larger, allowing more fluid to
pass through the material. The shape of the channel also improves flow efficiency as it changes from a



Fig. 3. Optimal periodic structures for the following weighting schemes: (a) astiff = 1.00, aperm = 0.00; (b) astiff = 0.75, aperm = 0.25;
(c) astiff = 0.50, aperm = 0.50; (d) astiff = 0.25, aperm = 0.75; and (e) astiff = 0.00, aperm = 1.00. Each periodic structure is composed of eight
base cells.
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rectangular cross-section for aperm = 0.25 and aperm = 0.50 to a circular cross-section for aperm = 0.75 and
aperm = 1.00 (see Fig. 4). This is also clearly demonstrated in Fig. 5 as the fluid connectivity between the base
cells become larger and more circular as aperm increases.

Another noticeable change as aperm increases from zero and astiff decreases from one is that the edges of the
hollow box design become smoother as material is moved from the edges of the base cell towards the center.
This decreases mechanical stiffness but also decreases the area of the solid–fluid interface where velocities are
zero due to the no-slip condition, thereby improving permeability. From the perspective of the fluid phase
(Fig. 5), the topology changes from a circular ball to a smooth, more pipe-like design.

For the case of aperm = 1.00 (case e), where permeability is the only property being optimized, the base cell
resembles the Schwarz P minimal surface as reported by the authors (Guest, 2005; Guest and Prévost, under
review). This is a logical design as it minimizes the solid-fluid interface where velocities are zero. It is interest-
ing to note, however, that this minimal surface offers some mechanical stiffness (BH = 0.163). This is unlike the
maximum stiffness design that yields zero permeability.

The computed bulk modulus and permeability values for the presented material structures are summa-
rized in Table 1. Optimality of the microstructures is verified by comparing the computed properties to
known property bounds. The Hashin–Shtrikman theoretical upper bound on bulk modulus for an isotropic
material with phases and void ratio used here is 0.253. This is slightly above the computed bulk modulus for
case (a) of 0.240, with the difference likely due to operating on a relatively coarse mesh and restricting the
design space to single length scale microstructures. As mentioned above, the Schwartz P minimal surface is
believed to be the maximum permeability structure. The corresponding permeability (case e) is computed as
3.18 · 10�3, which compares reasonably well with the permeability of the Schwartz P minimal surface com-
puted by Jung and Torquato (2005) (kH = 3.48 ·10�3). The difference in magnitude is due to operating on a
much coarser mesh than Jung and Torquato, thereby reducing accuracy and, more importantly, limiting the
degree of smoothness the microstructure can obtain. The mesh used here is necessarily coarser as we are
solving a multi-physics problem and are operating in the context of iterative design, rather than simply
analysis.



Fig. 4. The solid phase base cell (left), periodic structure (center), and periodic structure cross-section (right) corresponding to the designs
shown in Fig. 3 for the five weight cases.
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With the exception of case (d), the property magnitudes given in Table 1 also follow the expected trend. As
shown in Figs. 4 and 5, the designs for case (d) and (e) are nearly identical. Although the permeability of
design (d) is slightly lower as expected, the bulk modulus is also lower, despite a larger weight assigned to
the stiffness term in the objective function. This suggests the result for case (d) is not the global optimum



Fig. 5. The fluid phase base cell (left), periodic structure (center), and periodic structure cross-section (right) corresponding to the designs
shown in Fig. 3 for the five weight cases. In order to clearly illustrate topology, these base cells were extracted from the corners of the base
cells of Fig. 4. In other words, the periodic structures shown here are located (0.5,0.5,0.5) from the periodic structures shown in Fig. 4.
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and is instead a local minimum. It is also likely that operating on a relatively coarse 30 · 30 · 30 element mesh
has contributed to this aberration and that finer meshes, while not guaranteeing global minima, will make
local minima less evident.



Table 1
Effective bulk modulus and permeability for the periodic materials created under the various weighting schemes

Case

(a) (b) (c) (d) (e)

astiff, aperm 1.00, 0.00 0.75, 0.25 0.50, 0.50 0.25, 0.75 0.00, 1.00
BH 0.240 0.200 0.179 0.161 0.163
kH (10�2) 9.53e-4 0.0677 0.213 0.300 0.318

Note: Elastic and flow symmetries were negligible for all cases
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
errorcubic

stiff

q
< 10�6

�
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erroriso

perm

q
< 10�12

	
.
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7. Concluding remarks

This paper proposes a topology optimization methodology for designing multifunctional porous material
microstructures optimized for stiffness and fluid permeability. As these are competing properties, the problem
was formulated such that designs are dependent upon the weight, or relative importance, assigned to the stiff-
ness and transport terms in the objective function. The designer selects these values based on the materials
future use, thus allowing the microstructure to be tailored according to its specific application.

Achieving these designs required simultaneous solution of elastic and fluid transport inverse homogeniza-
tion problems, a complex task given that they are governed by vector equations and must be solved in three-
dimensional space. Inherent numerical instabilities of the maximum stiffness problem were overcome by
imposing a minimum length scale on structural features via the nodal design variable and projection function
technique (Guest et al., 2004). This also provides a means for satisfying manufacturing constraints. Numerical
difficulties associated with the binary, moving-boundary fluid transport optimization problem were overcome
via a Darcy flow regularization procedure (Guest and Prévost, 2006).

A drawback of the proposed algorithm is the reliance on parameters in the stiffness and flow regularizations
and associated continuation methods. It is possible that these schemes will need tuning when introducing new
physics into the combinatorial optimization problem. However, the parameter magnitudes and continuation
schemes used here are nearly identical to those used when solving the individual physics problems for which
they were originally developed. The regularization and continuation method parameters can be removed by
replacing the presented nested-loop, continuous optimization algorithm with a discrete optimization algo-
rithm that simultaneously solves for the design and state variables. This, however, would increase computa-
tional demands immensely and increase the probability of solutions being local and not global minima.

The methodology was successfully used to design three-dimensional periodic materials having maximized
bulk modulus and permeability while exhibiting cubic elastic and isotropic flow symmetries. Figs. 4 and 5
and Table 1 illustrate the advantage of the multi-objective methodology as the prescribed weighting schemes
clearly influenced design. The results presented here consider just five combinations of weights. Obviously, a
wide-range of designs can be achieved by considering more combinations, although a finer mesh is likely
required to see more subtle changes in topology.

Although bulk modulus and isotropic permeability were the only material properties presented here, the
methodology can be extended to optimize any combination of elastic and flow properties and symmetries. This
would include optimizing Young’s modulus, shear modulus, or multiple elastic properties while requiring
lower bounds on flow material properties. If the material orientation is known, directional stiffness and flow
properties could also be optimized.

It is important to emphasize that the underlying methodology of inverse homogenization via topology opti-
mization is quite general and can be applied to the design of composite materials. Further, other material
properties of interest (e.g., thermal conductivity or expansion, electrical conductivity, etc.) can be substituted
or added to the presented combinatorial design optimization problem.
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