15 research outputs found
Dark matter and Colliders searches in the MSSM
We study the complementarity between dark matter experiments (direct
detection and indirect detections) and accelerator facilities (the CERN LHC and
a TeV Linear Collider) in the framework of the
constrained Minimal Supersymmetric Standard Model (MSSM). We show how
non--universality in the scalar and gaugino sectors can affect the experimental
prospects to discover the supersymmetric particles. The future experiments will
cover a large part of the parameter space of the MSSM favored by WMAP
constraint on the relic density, but there still exist some regions beyond
reach for some extreme (fine tuned) values of the supersymmetric parameters.
Whereas the Focus Point region characterized by heavy scalars will be easily
probed by experiments searching for dark matter, the regions with heavy
gauginos and light sfermions will be accessible more easily by collider
experiments. More informations on both supersymmetry and astrophysics
parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?
It is well known that the dark matter dominates the dynamics of galaxies and
clusters of galaxies. Its constituents remain a mystery despite an assiduous
search for them over the past three decades. Recent results from the
satellite-based PAMELA experiment detect an excess in the positron fraction at
energies between 10-100 GeV in the secondary cosmic ray spectrum. Other
experiments namely ATIC, HESS and FERMI show an excess in the total electron
(\ps + \el) spectrum for energies greater 100 GeV. These excesses in the
positron fraction as well as the electron spectrum could arise in local
astrophysical processes like pulsars, or can be attributed to the annihilation
of the dark matter particles. The second possibility gives clues to the
possible candidates for the dark matter in galaxies and other astrophysical
systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear
in Pramana as topical revie
Dark Matter Candidates: A Ten-Point Test
An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been
proposed over the last three decades. Here we present a 10-point test that a
new particle has to pass, in order to be considered a viable DM candidate: I.)
Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it
neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution
unchanged? VI.) Is it compatible with constraints on self-interactions? VII.)
Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with
gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds?
X.) Can it be probed experimentally?Comment: 29 pages, 12 figure
Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50) value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50) values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill
Resources for the Comprehensive Discovery of Functional RNA Elements
Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell-lines, tissues and developmental stages, is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/)