27 research outputs found

    One-variable word equations in linear time

    Full text link
    In this paper we consider word equations with one variable (and arbitrary many appearances of it). A recent technique of recompression, which is applicable to general word equations, is shown to be suitable also in this case. While in general case it is non-deterministic, it determinises in case of one variable and the obtained running time is O(n + #_X log n), where #_X is the number of appearances of the variable in the equation. This matches the previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a couple of heuristics as well as more detailed time analysis the running time is lowered to O(n) in RAM model. Unfortunately no new properties of solutions are shown.Comment: submitted to a journal, general overhaul over the previous versio

    Compressed Membership for NFA (DFA) with Compressed Labels is in NP (P)

    Get PDF
    In this paper, a compressed membership problem for finite automata, both deterministic and non-deterministic, with compressed transition labels is studied. The compression is represented by straight-line programs (SLPs), i.e. context-free grammars generating exactly one string. A novel technique of dealing with SLPs is introduced: the SLPs are recompressed, so that substrings of the input text are encoded in SLPs labelling the transitions of the NFA (DFA) in the same way, as in the SLP representing the input text. To this end, the SLPs are locally decompressed and then recompressed in a uniform way. Furthermore, such recompression induces only small changes in the automaton, in particular, the size of the automaton remains polynomial. Using this technique it is shown that the compressed membership for NFA with compressed labels is in NP, thus confirming the conjecture of Plandowski and Rytter and extending the partial result of Lohrey and Mathissen; as it is already known, that this problem is NP-hard, we settle its exact computational complexity. Moreover, the same technique applied to the compressed membership for DFA with compressed labels yields that this problem is in P; for this problem, only trivial upper-bound PSPACE was known

    A really simple approximation of smallest grammar

    Full text link
    In this paper we present a really simple linear-time algorithm constructing a context-free grammar of size O(g log (N/g)) for the input string, where N is the size of the input string and g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Sigma of the input string can be identified with numbers from 1,ldots, N^c for some constant c. Algorithms with such an approximation guarantee and running time are known, however all of them were non-trivial and their analyses were involved. The here presented algorithm computes the LZ77 factorisation and transforms it in phases to a grammar. In each phase it maintains an LZ77-like factorisation of the word with at most l factors as well as additional O(l) letters, where l was the size of the original LZ77 factorisation. In one phase in a greedy way (by a left-to-right sweep and a help of the factorisation) we choose a set of pairs of consecutive letters to be replaced with new symbols, i.e. nonterminals of the constructed grammar. We choose at least 2/3 of the letters in the word and there are O(l) many different pairs among them. Hence there are O(log N) phases, each of them introduces O(l) nonterminals to a grammar. A more precise analysis yields a bound O(l log(N/l)). As l \leq g, this yields the desired bound O(g log(N/g)).Comment: Accepted for CPM 201

    Context unification is in PSPACE

    Full text link
    Contexts are terms with one `hole', i.e. a place in which we can substitute an argument. In context unification we are given an equation over terms with variables representing contexts and ask about the satisfiability of this equation. Context unification is a natural subvariant of second-order unification, which is undecidable, and a generalization of word equations, which are decidable, at the same time. It is the unique problem between those two whose decidability is uncertain (for already almost two decades). In this paper we show that the context unification is in PSPACE. The result holds under a (usual) assumption that the first-order signature is finite. This result is obtained by an extension of the recompression technique, recently developed by the author and used in particular to obtain a new PSPACE algorithm for satisfiability of word equations, to context unification. The recompression is based on performing simple compression rules (replacing pairs of neighbouring function symbols), which are (conceptually) applied on the solution of the context equation and modifying the equation in a way so that such compression steps can be in fact performed directly on the equation, without the knowledge of the actual solution.Comment: 27 pages, submitted, small notation changes and small improvements over the previous tex

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    Equations over free inverse monoids with idempotent variables

    Full text link
    We introduce the notion of idempotent variables for studying equations in inverse monoids. It is proved that it is decidable in singly exponential time (DEXPTIME) whether a system of equations in idempotent variables over a free inverse monoid has a solution. The result is proved by a direct reduction to solve language equations with one-sided concatenation and a known complexity result by Baader and Narendran: Unification of concept terms in description logics, 2001. We also show that the problem becomes DEXPTIME hard , as soon as the quotient group of the free inverse monoid has rank at least two. Decidability for systems of typed equations over a free inverse monoid with one irreducible variable and at least one unbalanced equation is proved with the same complexity for the upper bound. Our results improve known complexity bounds by Deis, Meakin, and Senizergues: Equations in free inverse monoids, 2007. Our results also apply to larger families of equations where no decidability has been previously known.Comment: 28 pages. The conference version of this paper appeared in the proceedings of 10th International Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17, 2015. Springer LNCS 9139, pp. 173-188 (2015

    Efficient LZ78 factorization of grammar compressed text

    Full text link
    We present an efficient algorithm for computing the LZ78 factorization of a text, where the text is represented as a straight line program (SLP), which is a context free grammar in the Chomsky normal form that generates a single string. Given an SLP of size nn representing a text SS of length NN, our algorithm computes the LZ78 factorization of TT in O(nN+mlogN)O(n\sqrt{N}+m\log N) time and O(nN+m)O(n\sqrt{N}+m) space, where mm is the number of resulting LZ78 factors. We also show how to improve the algorithm so that the nNn\sqrt{N} term in the time and space complexities becomes either nLnL, where LL is the length of the longest LZ78 factor, or (Nα)(N - \alpha) where α0\alpha \geq 0 is a quantity which depends on the amount of redundancy that the SLP captures with respect to substrings of SS of a certain length. Since m=O(N/logσN)m = O(N/\log_\sigma N) where σ\sigma is the alphabet size, the latter is asymptotically at least as fast as a linear time algorithm which runs on the uncompressed string when σ\sigma is constant, and can be more efficient when the text is compressible, i.e. when mm and nn are small.Comment: SPIRE 201

    Rpair: Rescaling RePair with Rsync

    Get PDF
    Data compression is a powerful tool for managing massive but repetitive datasets, especially schemes such as grammar-based compression that support computation over the data without decompressing it. In the best case such a scheme takes a dataset so big that it must be stored on disk and shrinks it enough that it can be stored and processed in internal memory. Even then, however, the scheme is essentially useless unless it can be built on the original dataset reasonably quickly while keeping the dataset on disk. In this paper we show how we can preprocess such datasets with context-triggered piecewise hashing such that afterwards we can apply RePair and other grammar-based compressors more easily. We first give our algorithm, then show how a variant of it can be used to approximate the LZ77 parse, then leverage that to prove theoretical bounds on compression, and finally give experimental evidence that our approach is competitive in practice

    Regular Matching and Inclusion on Compressed Tree Patterns with Context Variables

    Get PDF
    International audienceWe study the complexity of regular matching and inclusion for compressed tree patterns extended by context variables. The addition of context variables to tree patterns permits us to properly capture compressed string patterns but also compressed patterns for unranked trees with tree and hedge variables. Regular inclusion for the latter is relevant to certain query answering on Xml streams with references
    corecore