376 research outputs found

    Low thrust interplanetary trajectory open loop error analysis, volume 1 Final report

    Get PDF
    Computer program for open-loop error analysis of low thrust interplanetary trajectorie

    Nonlinear and adaptive estimation techniques in reentry

    Get PDF
    The development and testing of nonlinear and adaptive estimators for reentry (e.g. space shuttle) navigation and model parameter estimation or identification are reported. Of particular interest is the identifcation of vehicle lift and drag characteristics in real time. Several nonlinear filters were developed and simulated. Adaptive filters for the real time identification of vehicle lift and drag characteristics, and unmodelable acceleration, were also developed and tested by simulation. The simulations feature an uncertain system environment with rather arbitrary model errors, thus providing a definitive test of estimator performance. It was found that nonlinear effects are indeed significant in reentry trajectory estimation and a nonlinear filter is demonstrated which successfully tracks through nonlinearities without degrading the information content of the data. Under the same conditions the usual extended Kalman filter diverges and is useless. The J-adaptive filter is shown to successfully track errors in the modeled vehicle lift and drag characteristics. The same filter concept is also shown to track successfully through rather arbitrary model errors, including lift and drag errors, vehicle mass errors, atmospheric density errors, and wind gust errors

    J-adaptive estimation with estimated noise statistics

    Get PDF
    The J-adaptive sequential estimator is extended to include simultaneous estimation of the noise statistics in a model for system dynamics. This extension completely automates the estimator, eliminating the requirement of an analyst in the loop. Simulations in satellite orbit determination demonstrate the efficacy of the sequential estimation algorithm

    A Bias-Aware EnKF Estimator for Aerodynamic Flows

    Get PDF
    Ensemble methods can integrate measurement data and CFD-based models to estimate the state of fluid systems in a robust and cost-efficient way. However, discretization errors can render numerical solutions a biased representation of reality. Left unaccounted for, biased forecast and observation models can lead to poor estimator performance. In this work, we propose a low-rank representation for the bias whose dynamics is represented by a colorednoise process. System state and bias parameters are simultaneously corrected on-line with the Ensemble Kalman Filter (EnKF) algorithm. The proposed methodology is demonstrated to achieve a 70% error reduction for the problem of estimating the state of the two-dimensional low-Re flow past a flat plate at high angle of attack using an ensemble of coarse-mesh simulations and pressure measurements at the surface of the body, compared to a bias-blind estimator. Strategies to determine the bias statistics and to deal with nonlinear observation functions in the context of ensemble methods are discussed

    Suboptimal filtering. Part 4 - Test-bed computer program Final report

    Get PDF
    Computer program plan for simulating real time observation schedules and combined effects of dynamic model errors in three-dimensional satellite motio

    Time-Symmetric Quantum Theory of Smoothing

    Full text link
    Smoothing is an estimation technique that takes into account both past and future observations, and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR

    Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

    Full text link
    Classical and quantum theories of time-symmetric smoothing, which can be used to optimally estimate waveforms in classical and quantum systems, are derived using a discrete-time approach, and the similarities between the two theories are emphasized. Application of the quantum theory to homodyne phase-locked loop design for phase estimation with narrowband squeezed optical beams is studied. The relation between the proposed theory and Aharonov et al.'s weak value theory is also explored.Comment: 13 pages, 5 figures, v2: changed the title to a more descriptive one, corrected a minor mistake in Sec. IV, accepted by Physical Review

    DNS-based measurement of the mean impulse response of homogeneous isotropic turbulence

    Full text link
    A technique for measuring the mean impulse response function of stationary homogeneous isotropic turbulence is proposed. Such measurement is carried out here on the basis of Direct Numerical Simulation (DNS). A zero-mean white-noise volume forcing is used to probe the turbulent flow, and the response function is obtained by accumulating the space-time correlation between the white forcing and the velocity field. This technique to measure the turbulent response in a DNS numerical experiment is a new research tool in that field of spectral closures where the linear response concept is invoked either by resorting to renormalized perturbations theories or by introducing the well-known Fluctuation-Dissipation Relation (FDR). Though the results obtained in the present work are limited to relatively low values of the Reynolds number, a preliminary analysis is possible. Both the characteristic form and the time scaling properties of the response function are investigated in the universal subrange of dissipative wavenumbers; a comparison with the response approximation given by the FDR is proposed through the independent DNS measurement of the correlation function. Very good agreement is found between the measured response and Kraichnan's description of random energy-range advection effects

    Variational assimilation of Lagrangian data in oceanography

    Get PDF
    We consider the assimilation of Lagrangian data into a primitive equations circulation model of the ocean at basin scale. The Lagrangian data are positions of floats drifting at fixed depth. We aim at reconstructing the four-dimensional space-time circulation of the ocean. This problem is solved using the four-dimensional variational technique and the adjoint method. In this problem the control vector is chosen as being the initial state of the dynamical system. The observed variables, namely the positions of the floats, are expressed as a function of the control vector via a nonlinear observation operator. This method has been implemented and has the ability to reconstruct the main patterns of the oceanic circulation. Moreover it is very robust with respect to increase of time-sampling period of observations. We have run many twin experiments in order to analyze the sensitivity of our method to the number of floats, the time-sampling period and the vertical drift level. We compare also the performances of the Lagrangian method to that of the classical Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page
    • …
    corecore