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I. INTRODUCTION

In previoué workslf2 - the authors have described a sequential estimator
‘(called the JjAdaptive estimator) which tracks the state of a dynamical system
with a simplified system model by simultaneously tracking a forcing term which
approximates the unmodeled system dynamics. This estimator has been very
3uccessfuily simulated in éatellite orbit determination pfoblemsl, where the
unmodeled system dynamics result from unmodeled earth oblateness accelerations.
" The J-Adaptive estimator requires, however, the specification_of a statistical

model for the unmodeled system dynamics.

The present study extends the J-Adaptive Estimator to include the simultan-
,eous estimation of the statistics of the unmodeled system accelerations, thus
completely automating the estimation process. Simulations in satellite orbit

l.détermination demonstrate the effectiveness of the resulting estimator.

The report is organized as follows. Section II reviews the J-Adaptive
estimation conéepts previously reported in detail. The algorithm for estimating
‘the unmodeled acceleration noise statistics is presented in Section IiI, which
also gives the full estimator equations} Section IV presents the simulation
results in detail. TFinally, Section VII presents the conclusions of this study

.and recommendations for further work.



II. THE J-ADAPTIVE ESTIMATOR

The basic concepts behind the J-Adaptive estimator have been reported

Wpreviousiy.l'z - In essence, the real dynamical system
R = £(R,R), (1)

where R 1s the satellite position vector (R = V), is modeled in the estima-

. tor as

R = f];l(R,l'{) + S(t)u, | (2)
30 that S(t)ﬁ approximates
FRR) - £ RB), 3

which is the modeling error made in the estimator dynamics. S(t) is a
specified "symmetry" matrixz (not contained in the work reported in Ref [1]1),

‘and u 1s the unmodeled acceleration vector. -

The J-Adaptive estimator sequentially tracks the stéte R,V and the

. unmodeled acceleration vector u from tracking {or other) data. In the
.estimafor, the unmodeled acceleration u is modeled statistically as a random
pblynomial in time (see Ref [1] and Section III).- The equations for the basic
‘J-Adaptive estimator are given in Eqs (24-29) of Ref [l]. The inclusion of the
symmetry ﬁatrix S modifies the prediction equation for the state estimate X%
‘(f{rst of Eqs (24) of Ref [1}]), and the definitions of the 1V, ¥q and wdd
matrices of Eqs (14) of Ref [1], which now become

3 , : T

2
T T
e g S 2% S
p(i+l,i) = y Yy (141,1) = . by (#1,1) = (4)
| lr s | 12 8§ 13
2 & S
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IIT. ESTIMATION OF NOISE STATISTICS -

The statistical model taken for the random (unmodeled) acceleration vector
‘u «in Ref [1l] is of the form

alkHl) = u(k) + k)T, T =t .. -t (5)

k+1 k?

where
al{k+l) = a(k) (6)

and the covariance matrix of U is specified a' priori to be some (diagonal)
;matrix ﬁﬁﬁ which is not allowed to decrease as a result of the estimation
process (as in a "eonsider" filter mode). On the other hand, u and u are
_estimated (unlike the "consider" filter mode). This is the basic J-Adaptive

filter.

Specification of U in the above filter requires some engineering judge-
ment and experimentation in a given problem, and has been found to be informa-
" tion rate dependent. It is clearly desirable to automate the process of selection
of - U by making it data dependent, or adaptive. Such adaptive estimation "of
U (or some other statistic in a random model for the acceleration u) is the

subject of the present report.

. The basic approach taken to the estimation of the statistics of the
acceleration u 'is the adaptive filtering approach of Refs [3,4]. 1In essence,
at each measurement time k, that valﬁe of the statistic is selected which
produces the most likely average measurement residual. This adaptive process
for the selection of the statistics of u will be made explicit below within

the context of the J-Adaptive filter.

The statistical model ultimately selected for u is given by
u(k+l) = u(k) + twik) (7)

where {w(k)} is a 3-vector, zero-mean, white Gaussian sequence with identically

‘distributed components and covariance matrix

PRECEDING PAGE BLANK NOT FE



elw(k)w ()} = qk)T 8 (8)

kﬂ"
where q(k) is to be estiméted from the measurements. The model for u given

in Eqs (5~6) was abandoned in favor of the model given in Eqn (7) for the
following reasons. The filter with the model in Eqs (5-6) contains correlation
‘matrices Cd A(cqrre}ation between the state and 1) and Uuﬁ' (correlation
between u and u). These correlation matrices force the state covariance matrix
P and the‘ u 'covariance matrix Uuu' Cﬁ and Uu& are in turn forced by

U&&. When Uﬁ&. fluctuates randomly, as it does when it is estimated from the
measurements, it introduces numerical inaccuracies in the correlations Cﬁ and

U . . These in turn cause {ll-conditioning of P and Uuu, sometimes to the

uu
point of loss of positive definmiteness.

The complete dynamical model selected is therefore given by

x{k+1)

¢_(x(k), Su(c), u(t) = ulk) + (-t )w(k)
B . ©

u{let+l) = u(k) + tw(k)

‘where x is the state vector (R,V) and ¢m is the mapping defined by Eqn (2).

The measurement model is given by
Yi(}c) = h,(x(k)) + v, (), 1=1,N L)

where y; are the écalar_measuréments available at time k, and '{vi(k)}

- are independent, scalar, zero-mean, white Gaussian noise sequences with
‘-E{V (k)vakj} =R,. (k) , -+ o (11)
i i ii k& . ‘
The measurement model is written in vector- form as

y(k) = h(x(k)) + v(k) , | (12)

where

- =‘E’1 I yl;]’ hl = 'E‘l '".hl;l'- R = diag (R,,). (13)



Now define the sensitivity matrices

. L a9
d(kt+l,k) = [M)] = [ z

3% (k) 3% ()
| Ea '
¥ (ktl,k) = l:g%(-}j—;ﬁ] & (14)
: —T3 S_
_ =
T(ktl,k) = I:%:;-E—E———lﬂ & 2
: |z 8
M, ()
' _ . - dh(x(k))
Mk) = ) "[:ax(k) ]

and the covariance and correlation matrices

el [x(k) - ®(k|2)] [x@) - i‘:(kli)]T}

CB(k]) =
¢ (k]a) = ef[x(0) - &Gk|ef] B0 - dafe]™ (15)
U(k[e) = ef[ulk) - ak|2)] @) - g2y

" where P(kln) is the state estimation error covariance matrix (covariance of
errors in ﬁ(klﬂ)) at ‘time tk, given all measurement up to and including

time t,. 'Cu and U have similar meaning. Then the usual extended Kalman

'filter4 with variance q(k) known and-specified is given below.
Prediction (in time) is giveﬁ by -

z(k+1]k)

It

o (R(k|k), sd(t[k))
_ (16)

(k+l|k) = da(k|k)



P (ktl k) = P (k|Kk)E* + oC k| ¥ + YCr(k|k)yor + wu(klk)TT
. u u

P (ktl k) + qUK)TTT

P(k+l|k) =

: (17
c (ktill) = ec (k[k) + YU(k|k) + q(k)T
U(k+l|k) = U(k]k) + q(k)T2I

where the argument (k+1,k) has been omitted from the matrices &, ¥ and T.

The (measurement) update is given by

x(k|k-1) + K (&) [F(&) - h(k(k|k-1)]]

x(k|k) =
oo i . (18)
GGk = Gk|e-1) + K () [y - h&xk|k-1)]]

P(k|k) = P(kfk-1) - K_(K)M(K)P(k|k-1)

Cu(k[k) = Cu(klk-l) - Kx(k)M(k)cu(k|k-1) : (19)
ﬁ(k]k) = U(k|k-1) - Ku(k)M(k)Cu(k]k-l)
" where

K (k)‘= P(k|k-1)Mi(k)Y_1(k)
* | (20)

K (k) = 6Lk [e-n Y (o)

" and where

T(k) = M(K)P(k[k-1)M (k) + R(K) | (21)



Now the variance gq(k) will be estimated via the techniques of Refs [3, 4].

To that end, define the average normalized predicted residual at time k+1,

_ ;8 Dy 1) - by RGs+1{K))]
TR e
2=1 RZ, (k¥l)
It is easy to compute
e{f2. 1 = effZ, |q(k)=0} + dq(k) ' (23)
k+1 Kkt ALE= q
where
» - L, NN M ()P (IR [IOM (kk)
et la=0} = £+ ] T » (24)
N° %=1 m=1 R, (k+l) R2 (ltl) .
, N N Mg(k+l)PFTMT(k+l)
. m
d = = » 3 (25)
NT 2=l m=l Ry, (ktl) ROCkHl)
Then the most probable q(k) based on ;k+1 is given by 3,4
_ : -(]i— [Ei_n - aef Ei_l_llq(k)zo}:[, if positive
q{k) = - (26)

0 ' ., otherwise

" with o = 1.

‘The estimate q(k) of q(k) utilized is an exponentially age—weighted'
average of q(k) generated from |
c, = -ac

k
' (27)

§(K)



. The. ﬁ(k) from Eqs (27) is used for q(k) in the filter equations (17).

To completé the estimator equations, the symmetry matrix § in Eqs (14)

A‘ and (16) musf be specified. A matrixr 5 used with success is given by

N % (k]K) 0 0
sl = RGO | 0 -§k|K) 0 (28)
| 0 0 -2 (k|k)

This points the acceleration vector u at the center of the earth.

10



IV. DETAILS OF SIMULATIONS

The simulaﬁions presented in the next section feature a circular, polar
- orbit of approximately 1000 km altitude. The "real" system force model consists
;of the two-body model, plus the earth oblateness model given in Appendix A,
plus a mascon (mass concentration) buried at a depth of 100 km. The mascon
acceleration is represented as

R -R R

AR = -n o4O (29)
™ m ]R - R [3 IR |3
m m

where K is of course the satellite position vector, -Rm is the mascon
position vector, and W = 0.02 kmalsec2 [so that W 5x10_8u, where u
is the gravitational parameter of the earth]. In summary, the real system is

represented by

-~ B
n

l% + AR + AR (30)

To complete the specificatioﬁ of the system constants (see Appendix A), the

rotation rate of the earth and the eccentricity of the earth are, respectively,
w = 7.2921159x107° rad/sec, e = 0.081813336 . (31)

Tracking (range and range rate) is simulated from several tracking stations
to give continuous,and often overlapping, station coverage, sampled every 5 sec.
Tracking begins at the north pole and usually continues for 50 minutes, which
is slightly less than one-half the orbital period, The -error models for range
and range rate measurements are simplified, consisting only of additive white
Caussian noise. Measurement noise standard deviations vary, and are specified

for each simulation.

Estimator dynamical models are variouély two-body, and two-body plus
approximate JZ and J3 oblateness accelerations. Precise estimator models

used are specified in each simulatiom.

11



V. SIMULATION RESULTS

The first set of simulations to be described feature the J-Adaptive esti-
mator with estimatéd noise variance q (J—A—a estimator) with a two-body
dynamical model.. The J—A—& estimator is also compared with the J-Adaptive
éstimator‘with engineered 3 priori statistic ﬁﬁﬁ ‘(J-A—ﬁ estimator), also
with a two-body dynamical model. Note that, with a two-body model, closed form

prediction equations are available, and no numerical integration is required.

- Figures 1~V show the performance of the J-A~q estimator with a two-body
dynamical model, when the measuremént noise standard deviations for range and
~range rate are cp = 3m, Gﬁ = 1 em/sec, respectively. As indicated in Section

. IV, continuous and often overlapping tracking station coverage is available.
Figures 1-3 show the tracking of the unmodeled acceleration. 'The solid lines
Arépresent the actual unmodeled acceleration (oblateness and mascon), while the
‘dots are the estimates Sd. The z-component of the unmodeled acceleration
dominates, being of the order of 10‘-5 (initally 10“4) km/secz, and is there-
fore tracked mbst precisely. The x and y acceleration component estimates
'are more noisy, but are clearly tracked. Note that there is an initial transient
lasting about 300 sec or so before the J-A-q estimator locks onto the unmodeled
acceleration, Figures 4 and 5 show the normalized measurement residuals (nor- '
‘malized by their noise standard deviations) for range and range rate. The
initial transient described above exhibits itself in the range rate residuals,
pfoducing initially, rather large residuals. This transient dies out, however,
and the measurement residuals then appear quite white and are within the
neasurement noise level. The absence of residuals after about 2000 sec of
tracking is merely a programming problem in the computer-generated plots; the
residuals continue tolexhibit appropriate statistical properties for the balance
. of 1000 sec. Figures 6 and 7'sﬁow the actual state estimation errors in
position and velocity; namely ]R—ﬁ] and ]V—%| . It is seen that after an
initial transient the state estimation errors are quite comparable with the
measﬁrement noise. That-is, position is estimated to about 3m and velocity to

about 1-5 cm/sec.

Let us discuss the initial ~ 300 sec tramsient which is observed in

Figures 1-7. This transient is, in part, due to the transient in 4 ; that is,

13 PMING PAGE BLANK NOT FH.MED



‘the state cannot be estimated precisely until the unmodeled acceleration is.
This iz not the whole story,'however, Note that the range rate normalized
‘résiduals, while sometimes as large as 5S¢ initially, are random and cannot
explain the large initial state estimation errors, particularly in velocity.

It is noted that the ‘drop in state errors at about 300 sec coincides with
acquisition of the satellite by a second tracking station. It is also noted
that the position and velocity estimation errors are largely in the x and ¥
components; the 2z component errors are quire small. This is simply due to the
‘station-satellite geometry. Thus from the first station, x, y, X and ¥y are
not as observable as z and % are. This geometric observability clearly has
an impact on the esfimation of Su as well; and also on the estimation of ﬁ.
q guarantees residuals consistent with a projection of the state covariance
matrix on the available measurement space; not on the unobservable subspace of
state spéce. This last observation was well evidenced in a simulation with
range rate measurements only. In that case, range rate residuals were just as
nice as in the present simulation, while state errors were not quite as good
during the first 300 sec of tracking. § compensated only for the state sub-
space it could see. Thié leads to the observation that while additional meas-
. urement types (e.g. angles) may not enhance a sténdard estimation process

(e.g. batch), they may well enhance the J-A-gq estimator.

The precision of tracking of the unmodeled acceleration can be improved
with more precise measurements. This can be seen in Figure 8; which shows the
x acceleration component estimate generated by the J—A~a estimator with
Ud = 0.3m and.‘oFS = 0.1 em/sec. Compare this with Figure 1.

The J-A-U estimator was simulated on the case described above (Up = 3m,

]

o. 1 cm/sec). This was easy to do once the J-A-d run was made; U was set

ai the steady-state value of aI. Figure 9 shows the tracking of the x
acceleration component. Comparing this with Figure 1, improvement in tracking
is seen, although tﬁe J-A-U estimates definitely have deterministic oscillations
and are not as desirable from this point of view. Figure 10 shows that the
J-A-U estimator produces somewhat nicer measurement residuals than the J-A-§

estimator (compare with Figure 5). But a stand-alone J-A-U run would require

14



engineering the U statistics which would normally take several simulations.
In contrast to this, all J-A-g estimator runs are completely automatic, and are

" untouched by human hand.

The next set of simulations to be described feature the J—A—& estimator
with an improved dynamical model. In addition to the two-body term, the esti-
mator contains the J2 and J3 terms with approximate values of J2 and J3;

namely, J2 = 1:083 x 10_3 R;, J3 = -2.55 % 10_6 Rg. The objective of these
simulations is to determine how well the estimator might identify the higher
order geopotentiél. Figure 11 shows the tracking of the z acceleration com—
ponent with o _ = 3m, cé = 1 cm/sec. It is observed that the lower accelera-
tion levels cannot be tracked with such noisy measurements. However, Figures
12 and 13 show that the state is still estimated to the data precision; the
undetected accelerations are inconsequential relative to the overall noise
levels. Figure 14 shows the tracking of the 2z acceleration component with
dp = 0.3m, Gﬁ = 0.1 cm/sec. - Tracking is improved (compare with Figure 11),
but the extremely low unmodeled accelerations are still undetected. Things

of course look much better on a linear scale (see Figure 15). Tracking can be

further improved with Gp = 3 cm, 06 = 0.01 em/sec, as can be seen in Figure 16.

When better instruments are developed we will show additional simulatioms.

The next simulations feature an unmodeled mascon. That is, rhe only model
error is due .to the mascon., As seen in Figure 17, the J-A—ﬁ estimator (unaided
by human hand) cannot track this extremely small unmodeled mascon acceleration.
‘As can be seen in Figure 18, howeveé, a carefully engineered J-A-U estimator
does detect the mascon, albeit with some lag and overshoot which eventually

- damps out. To accomplish.this, however, we need 'Up =1 cm and 05 = 0.01 em/sec.

' Limited simulations were performed on a single station pass. This is the
first stétiqn of the earlier simulations (recall the earlier station-satellite
geometry discussion). The measurement noise standard deviations for range and
range rate are op = 3m,-‘cé =1 cm/sec, ;espectively. Table 1 summarizes
"the position and velocity errors at the end of the pass for several cases.
‘Firsf a standard extended Kalman filter4 run was made, where the filter model

-was perfect (full oblateness). The lack of good observability in the x and ¥y

15



coordinate'directions is clearly seen in Table 1 (although it should be noted
that the filter was not iterated,4 either locally or globally; some small
.improvement might be expected with iteration.) WNext a totally uncompensated,
standard extended Kalman filter run was made, where the filter model contained
thg two-body term and the J2 and J3‘ terms with the approximate valueg of

J2 and J3 used above. It is seen in Table 1 that this uncompensated filter
is diverging, as expected. A J-A-q estimator, with the two-body and the same
.apprdximate J2 and J3 terms was, completely unsuccessful (started to diverge).
This is due to the initial transient, discussed earlier, where the u estimates
are\poor; the ~J-A-q estimator is not yet locked ontd the unmodeled accelera-

" tiom. However, improyed results are obtained (shown in fhe last line of Table 1),
when the estimated U is not used for prediction. This might be termed an
"adaptive consider mdde" of the estimator. As seen in Table 1, these results
(third line) are comparable to the perfect model run (first line) in the =x

and y coordinate directions. z-coordinate errors are larger, however; the
J~A~q adaﬁtive consider mode filter is putting too much uncertainty in the

z~direction.

These single station pass simulations indicate that when observability is
mafginal, automatic adaptive estimation is of questibnable value. Great care
must be exercise in adding uncertainty to a selected subspace of the state space;

$0 as not to destroy the information content of the data.

16
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SINGLE STATION PASS ERRORS

Table 1

Position Errors (m)

Errore (m/sec)

Velocity
XX y—§ z-Z % - . _E—;
Perfect Model 146. -171. - 9.8 0.22 -0.24 0.003
Extended Kalman S
Uncompensated 558. ~646. -68.6 0.80 -0.95 =0.070
Extended Kalman )
J-A-3 150. -118. [-335.. |[-0.69- |-0.07 |-1.34
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VI. NEW TECHNOLOGY

The work under this contract consisted of the development of recursive
estimation techniques for'application to satellite orbit determination. The
previously developed J-Adaptive estimator was modified and extended to include
the geometry of randoﬁ (unmodeled) accelerations, and the adaptive estimation_.
of noise statistics in a stochastic model fﬁr these accelerations. The
algorithms developed were tested by computer simulation on satelliie_orbit
problems with unmodeled earth oblateness and mascon accelerations of various

types.

The algorithm developed as a result of this effort 1s applicable to satel-
lite orbit determination when excellent, continuous tracking coverage is

available, as may be the case in satellite-to-satellite trécking.

Frequent reviews and a final'Survey for new techﬁology were performed.
While the extensions to the J-Adaptive estimator ﬂeveloped represent new
mathematical techniques applicable to satellite orbit determinatibn, it is
believed that they do not represent reportable or patentable items within the
meaning of the New Techndlogy Clause.. Qur réviews and final survey found no
other items which could be considered reportable items under the New Technology

Clausé.

. -
PRECEDING pacp BLANEK NOT Pramp
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VII." CONCLUSIONS AND RECOMMENDATIONS

Simulations demonstrate that the J-Adaptive estimatorEWith estimated
noise statistics can automatically, without human intervention, and with a.verf
simple orbit model (e.g. two-body model), estimate satellite orbits to an
accuracy comparable with the data noise levels, when excellent, continuous
tracking coverage is available. Such tracking coverage may be available from
satellite~-to-satellite tracking. The faet that a two-body modei can be utilized
in the estimator prediction equation eliminates the need for numerical integra-
tion of the orbit dynamics equatioms, whicﬁ in turn results in a very fast,- ‘

(computational) orbit estimation algorithm.

This estimator also tracks (estimates) the unmodeled acceleration vector. -
From these latter estimates a parametric model of the unmodeled accelerations
may be recovered. Thé precision of tracking of these umnmodeled acceleratiomns
1s a function of the measufement noise levels (measurement precision). Every-
thing else being equal, the J-Adaptive estimator with a’.priori "engineered"
unmodeled acceleration statisties can track the ummodeled accelerations with
higher precision than the estimator with estimated noise statistics. However,

to engineer these statistics requires trial runs and simulations.

In the absence of excellent tracking station coverage (single stat;on pass),
the J-Adaptive estimator is unsuccéssful; there is a relétively long transient
before the estimator locks onto the unmodeled acceleration. A consider version
of the estimator ('adaptive consider mode") shows some promise in this situation,

but further research is required in this area.
On the basis of study results, the following recommendations are made:

(1) The J—Adaptive estimator with estimated neise statistics sh@uid be
applied to the satellite-to-satellite tracking problem. Simulations
should be performed in this environment to verify estimator pef~
formance. This is a very natural application becauée of the great
abundance of data.available. This abundance of data is precisely
where the J-Adaptive estimator 1s extremely efficient as opposed to

batch estimation methods.
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(2)

(3

(4)

(5)

The J-Adaptive estimator should be studied in an environment con-
taining more realistic measurement error models, including station

location errors, timing errors, and so on.

The single station pass tracking situation should be investigated,
with a view, for example, to restrictiug uncertainties to selected

subspaces of the state 9pace.
Other measurement types (angles) should be incorporated in J-Adaptive
estimator studies. These may enhance the noise statistics estima-

tion, thus improving tracking performance.

Finally, parametric model recovery from the unmodeled acceleration

estimates generated by the J-Adaptive estimator should be studied.
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Appendix A - Oblateness Model

A low order earth oblateness model utilized in the simulation stud:s.es is
given below. In the equations which follow, E:,y,z:[ is the satell:.te.
earth-fixed position vector expressed in km; r = [R|; 1 - 1s the gravitational
parameter of the earth; JZ’ J3 and J4 are zonal harmonic COefficien;s; sz, -

522, C31, 531, 033, 333 are tesseral harmonic coefficients; ‘and

0 0

e = 0 ., .’ = 1 , e = 0
x b4 z

0 0 1

g {05 - ]
-3 (et 2-[s @)
FJ4=15uJ {E’Zl Z)—14§+1:[R+[ )j }

2 2 7 . : | . :
3 [-MR+2xe - 2ye | C,, *+ —-I-QE—{XR+2xe + 2ye_ |5 1
r> r? x yi 22 2 y X 22/1

o
]

22

Fyy = —{[ TE (4z2- x2- y2) R + (42 - %= 3x%) e - 2xye + SXYE:[ 31

-1y 2_ 2 2 - 2 W2 ay2 :
+ [ rz (42 X~y )R nyex + (4zc= x=- 3y .) ey + Byzez:[S:H}
F., = 1511{[ 7% (x2- 3y2) R + 3 (x2— y2) e, - 6xye] 33

33

_ Y a2 2 a2 2 .
+|: rz‘(l’ox y)R+6xyex+3(x y)ey:[s33}
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the acceleration due to oblateness, in earth-fixed coordinates and expressed

in km/sec2 is given by

BRog = Fyp F Fyq+ Fpp = Foy = Fyy = Fag

Numerical values for the coefficients above are

W= 3.986032 x -10° (k> /sec?)
J, = 1.08265 % 1073 Ré (k)
Iy = ~2.546 x 107° Rg (kn”)
I, = -~1.649 x 107° Rg .(km4)

C,, = 0.1536 x 107 Ré (kmz)
‘ S,, = -0.872x10° R (i)
¢, = 0,201 x 107 R (kmd)
S, = 0.287 x 107° Rg (km>)
Cyy = 0.782 x 10”7 Rg (k)
S,, = 0.226x 10° R ()
(km)

R, = 6378.1641

44



