171 research outputs found
Strong Relationship Between Vascular Function in the Coronary and Brachial Arteries: A Clinical Coming of Age for the Updated Flow-Mediated Dilation Test?
Early detection of coronary artery dysfunction is of paramount cardiovascular clinical importance, but a noninvasive assessment is lacking. Indeed, the brachial artery flow-mediated dilation test only weakly correlated with acetylcholine-induced coronary artery function (r=0.36). However, brachial artery flow-mediated dilation methodologies have, over time, substantially improved. This study sought to determine if updates to this technique have improved the relationship with coronary artery function and the noninvasive indication of coronary artery dysfunction. Coronary artery and brachial artery function were assessed in 28 patients referred for cardiac catheterization (61±11 years). Coronary artery function was determined by the change in artery diameter with a 1.82 μg/min intracoronary acetylcholine infusion. Based on the change in vessel diameter, patients were characterized as having dysfunctional coronary arteries (\u3e5% vasoconstriction) or relatively functional coronary arteries (\u3c5% vasoconstriction). Brachial artery function was determined by flow-mediated dilation, adhering to current guidelines. The acetylcholine-induced change in vessel diameter was smaller in patients with dysfunctional compared with relatively functional coronary arteries (−11.8±4.6% versus 5.8±9.8%, P\u3c0.001). Consistent with this, brachial artery flow-mediated dilation was attenuated in patients with dysfunctional compared with relatively functional coronaries (2.9±1.9% versus 6.2±4.2%, P=0.007). Brachial artery flow-mediated dilation was strongly correlated with the acetylcholine-induced change in coronary artery diameter (r=0.77, P\u3c0.0001) and was a strong indicator of coronary artery dysfunction (receiver operator characteristic=78%). The current data support that updates to the brachial artery flow-mediated dilation technique have strengthened the relationship with coronary artery function, which may now provide a clinically meaningful indication of coronary artery dysfunction
Recommended from our members
Visualizing the metazoan proliferation-quiescence decision in vivo
Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in Caenorhabditis elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell-cycle control in a wide-range of developmental contexts.
</div
Transcriptional Landscape of the Prenatal Human Brain
Summary The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development
Intra-tumoural microvessel density in human solid tumours
Over the last decade assessment of angiogenesis has emerged as a potentially useful biological prognostic and predictive factor in human solid tumours. With the development of highly specific endothelial markers that can be assessed in histological archival specimens, several quantitative studies have been performed in various solid tumours. The majority of published studies have shown a positive correlation between intra-tumoural microvessel density, a measure of tumour angiogenesis, and prognosis in solid tumours. A minority of studies have not demonstrated an association and this may be attributed to significant differences in the methodologies employed for sample selection, immunostaining techniques, vessel counting and statistical analysis, although a number of biological differences may account for the discrepancy. In this review we evaluate the quantification of angiogenesis by immunohistochemistry, the relationship between tumour vascularity and metastasis, and the clinicopathological studies correlating intra-tumoral microvessel density with prognosis and response to anti-cancer therapy. In view of the extensive nature of this retrospective body of data, comparative studies are needed to identify the optimum technique and endothelial antigens (activated or pan-endothelial antigens) but subsequently prospective studies that allocate treatment on the basis of microvessel density are required
Temporal changes in the epidemiology, management, and outcome from acute respiratory distress syndrome in European intensive care units: a comparison of two large cohorts
Background: Mortality rates for patients with ARDS remain high. We assessed temporal changes in the epidemiology and management of ARDS patients requiring invasive mechanical ventilation in European ICUs. We also investigated the association between ventilatory settings and outcome in these patients. Methods: This was a post hoc analysis of two cohorts of adult ICU patients admitted between May 1–15, 2002 (SOAP study, n = 3147), and May 8–18, 2012 (ICON audit, n = 4601 admitted to ICUs in the same 24 countries as the SOAP study). ARDS was defined retrospectively using the Berlin definitions. Values of tidal volume, PEEP, plateau pressure, and FiO2 corresponding to the most abnormal value of arterial PO2 were recorded prospectively every 24 h. In both studies, patients were followed for outcome until death, hospital discharge or for 60 days. Results: The frequency of ARDS requiring mechanical ventilation during the ICU stay was similar in SOAP and ICON (327[10.4%] vs. 494[10.7%], p = 0.793). The diagnosis of ARDS was established at a median of 3 (IQ: 1–7) days after admission in SOAP and 2 (1–6) days in ICON. Within 24 h of diagnosis, ARDS was mild in 244 (29.7%), moderate in 388 (47.3%), and severe in 189 (23.0%) patients. In patients with ARDS, tidal volumes were lower in the later (ICON) than in the earlier (SOAP) cohort. Plateau and driving pressures were also lower in ICON than in SOAP. ICU (134[41.1%] vs 179[36.9%]) and hospital (151[46.2%] vs 212[44.4%]) mortality rates in patients with ARDS were similar in SOAP and ICON. High plateau pressure (> 29 cmH2O) and driving pressure (> 14 cmH2O) on the first day of mechanical ventilation but not tidal volume (> 8 ml/kg predicted body weight [PBW]) were independently associated with a higher risk of in-hospital death. Conclusion: The frequency of and outcome from ARDS remained relatively stable between 2002 and 2012. Plateau pressure > 29 cmH2O and driving pressure > 14 cmH2O on the first day of mechanical ventilation but not tidal volume > 8 ml/kg PBW were independently associated with a higher risk of death. These data highlight the continued burden of ARDS and provide hypothesis-generating data for the design of future studies
Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions
Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)
- …