2,007 research outputs found

    Mapping of wildlife habitat in Farmington Bay, Utah

    Get PDF
    Mapping was accomplished through the interpretation of high-altitude color infrared photography. The feasibility of utilizing LANDSAT digital data to augment the analysis was explored; complex patterns of wildlife habitat and confusion of spectral classes resulted in the decision to make limited use of LANDSAT data in the analysis. The final product is a map which delineates wildlife habitat at a scale of 1:24,000. The map is registered to and printed on a screened U.S.G.S. quadrangle base map. Screened delineations of shoreline contours, mapped from a previous study, are also shown on the map. Intensive field checking of the map was accomplished for the Farmington Bay Waterfowl Management Area in August 1981; other areas on the map received only spot field checking

    Laser beam hydrocarbon detector

    Get PDF
    Portable instrument passes light from helium-neon laser at a wavelength of 3.39 microns through the atmosphere being monitored and measures attenuation of the laser beam. Since beam attenuation is due almost exclusively to absorption of radiation by hydrocarbons, a quantitative measure of their concentration is available

    Microcanonical Origin of the Maximum Entropy Principle for Open Systems

    Full text link
    The canonical ensemble describes an open system in equilibrium with a heat bath of fixed temperature. The probability distribution of such a system, the Boltzmann distribution, is derived from the uniform probability distribution of the closed universe consisting of the open system and the heat bath, by taking the limit where the heat bath is much larger than the system of interest. Alternatively, the Boltzmann distribution can be derived from the Maximum Entropy Principle, where the Gibbs-Shannon entropy is maximized under the constraint that the mean energy of the open system is fixed. To make the connection between these two apparently distinct methods for deriving the Boltzmann distribution, it is first shown that the uniform distribution for a microcanonical distribution is obtained from the Maximum Entropy Principle applied to a closed system. Then I show that the target function in the Maximum Entropy Principle for the open system, is obtained by partial maximization of Gibbs-Shannon entropy of the closed universe over the microstate probability distributions of the heat bath. Thus, microcanonical origin of the Entropy Maximization procedure for an open system, is established in a rigorous manner, showing the equivalence between apparently two distinct approaches for deriving the Boltzmann distribution. By extending the mathematical formalism to dynamical paths, the result may also provide an alternative justification for the principle of path entropy maximization as well.Comment: 12 pages, no figur

    Rules for transition rates in nonequilibrium steady states

    Full text link
    Just as transition rates in a canonical ensemble must respect the principle of detailed balance, constraints exist on transition rates in driven steady states. I derive those constraints, by maximum information-entropy inference, and apply them to the steady states of driven diffusion and a sheared lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behaviour and, for steady shear, gives rise to stress-mediated long-range interactions.Comment: 4 pages. To appear in Physical Review Letter

    A two-step MaxLik-MaxEnt strategy to infer photon distribution from on/off measurement at low quantum efficiency

    Full text link
    A method based on Maximum-Entropy (ME) principle to infer photon distribution from on/off measurements performed with few and low values of quantum efficiency is addressed. The method consists of two steps: at first some moments of the photon distribution are retrieved from on/off statistics using Maximum-Likelihood estimation, then ME principle is applied to infer the quantum state and, in turn, the photon distribution. Results from simulated experiments on coherent and number states are presented.Comment: 4 figures, to appear in EPJ

    Orthogonality relations for triple modes at dielectric boundary surfaces

    Get PDF
    We work out the orthogonality relations for the set of Carniglia-Mandel triple modes which provide a set of normal modes for the source-free electromagnetic field in a background consisting of a passive dielectric half-space and the vacuum, respectively. Due to the inherent computational complexity of the problem, an efficient strategy to accomplish this task is desirable, which is presented in the paper. Furthermore, we provide all main steps for the various proofs pertaining to different combinations of triple modes in the orthogonality integral.Comment: 15 page

    Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah

    Get PDF
    The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided

    Measurement Invariance, Entropy, and Probability

    Full text link
    We show that the natural scaling of measurement for a particular problem defines the most likely probability distribution of observations taken from that measurement scale. Our approach extends the method of maximum entropy to use measurement scale as a type of information constraint. We argue that a very common measurement scale is linear at small magnitudes grading into logarithmic at large magnitudes, leading to observations that often follow Student's probability distribution which has a Gaussian shape for small fluctuations from the mean and a power law shape for large fluctuations from the mean. An inverse scaling often arises in which measures naturally grade from logarithmic to linear as one moves from small to large magnitudes, leading to observations that often follow a gamma probability distribution. A gamma distribution has a power law shape for small magnitudes and an exponential shape for large magnitudes. The two measurement scales are natural inverses connected by the Laplace integral transform. This inversion connects the two major scaling patterns commonly found in nature. We also show that superstatistics is a special case of an integral transform, and thus can be understood as a particular way in which to change the scale of measurement. Incorporating information about measurement scale into maximum entropy provides a general approach to the relations between measurement, information and probability
    • …
    corecore